Main Article Content
Abstract
Microcrystalline cellulose (MCC) is emerging in popularity because of its renewability, non-toxicity, economic benefits, biodegradability, excellent mechanical properties, large surface area, and good biocompatibility. For instance, it is used in foods, pharmaceuticals, medicine, cosmetics, and polymer composites. MCC can be produced via several approaches, such as by reactive extrusion, enzyme mediated processes, steam explosions, and acid hydrolysis. It is widely utilized in tableting excipients as well because of its exceptional dry binding traits while undergoing direct compression. For particular industries, MCC’s particle size, density, compressibility index, angle of repose, powder porosity, hydration swelling capacity, moisture sorption capacity, moisture content, crystallinity index, crystallite size and mechanical properties are determined in order to establish applicability for the industry. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) or differential scanning calorimetry (DSC) is typical of measuring MCC, these dimensions then allow for the predication of the thermal behaviour of MCC when subjected to different heat stresses. For nanocrystalline cellulose, the degree of polymerization of MCC is usually over 400 while for MCC is less than that. Maximum mass fraction of 10% of all particles must consist of MCC particles sized lower than 5µm. There are several subclasses of MCC such as PHs 101, 102, 103, 105, 112, 113, 200, 301, and 302 which can be categorized according to their size.
Keywords
Article Details
References
- 1. Yohana Chaerunisaa A, Sriwidodo S and Abdassah M (2020) Microcrystalline Cellulose as Pharmaceutical Excipient. Pharmaceutical Formulation Design - Recent Practices. Intech Open. Available at: https://www.intechopen.com/chapters/68199
- 2. Trache, Djalal, et al. "Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review." International Journal of Biological Macromolecules 93 (2016): 789-804. https://www.sciencedirect.com/science/article/abs/pii/S0141813016310169
- 3. Chaerunisaa, Anis Yohana, Sriwidodo Sriwidodo, and Marline Abdassah. "Microcrystalline cellulose as pharmaceutical excipient." Pharmaceutical formulation design-recent practices. IntechOpen, 2019. https://www.researchgate.net/publication/334717784_Microcrystalline_Cellulose_as_Pharmaceutical_Excipient/fulltext/5d3bc1d192851cd0468a1a2a/Microcrystalline-Cellulose-as-Pharmaceutical-Excipient.pdf
- 4. Bhandari, Kunal, et al. "Synthesis of microcrystalline cellulose from carpenter waste and its characterizations." Journal of Natural Fibers 19.6 (2022): 1975-1989. https://www.tandfonline.com/doi/full/10.1080/15440478.2020.1788688#abstract
- 5. Thoorens, Gregory, et al. "Microcrystalline cellulose, a direct compression binder in a quality by design environment—A review." International journal of pharmaceutics 473.1-2 (2014): 64-72. https://www.sciencedirect.com/science/article/pii/S0378517314004840
- 6. Kambli, Nishant D., et al. "Synthesis and characterization of microcrystalline cellulose powder from corn husk fibres using bio-chemical route." Cellulose 24 (2017): 5355-5369. https://link.springer.com/article/10.1007/s10570-017-1522-4
- 7. Trache, Djalal. "Microcrystalline cellulose and related polymer composites: synthesis, characterization and properties." Handbook of composites from renewable materials, structure and chemistry 1 (2016): 61-92.
- 8. Adeleye OA, etal.,Characterizations of Alpha-Cellulose and Microcrystalline Cellulose Isolated from Cocoa Pod Husk as a Potential Pharmaceutical Excipient. Materials (Basel). 2022 Aug 30;15(17):5992. doi: 10.3390/ma15175992.
- 9. Tasnim, S.; etal., Modification of Bulk Density, Flow Property and Crystallinity of Microcrystalline Cellulose Prepared from Waste Cotton. Materials 2023, 16, 5664. https://doi.org/10.3390/ma16165664.
- 10. Liberto, E.A.; Dintcheva, N.T. Biobased Films Based on Chitosan and Microcrystalline Cellulose for Sustainable Packaging Applications. Polymers 2024, 16, 568. https://doi.org/10.3390/polym16050568.
- 11. Janssen, P. H. M., Fathollahi, S., Dickhoff, B. H. J., & Frijlink, H. W. (2024). Critical review on the role of excipient properties in pharmaceutical powder-to-tablet continuous manufacturing. Expert Opinion on Drug Delivery, 21(7), 1069–1079. https://doi.org/10.1080/17425247.2024.2384698
- 12. Shlieout, G., Arnold, K. & Müller, G. Powder and mechanical properties of microcrystalline cellulose with different degrees of polymerization. AAPS PharmSciTech 3, 11 (2002). https://doi.org/10.1208/pt030211
- 13. Kuo, Yen‐Ning, and Juan Hong. "Investigation of solubility of microcrystalline cellulose in aqueous NaOH." Polymers for advanced technologies 16.5 (2005): 425-428. https://onlinelibrary.wiley.com/doi/abs/10.1002/pat.595
- 14. Choe, Deokyeong, et al. "Synthesis of high-strength microcrystalline cellulose hydrogel by viscosity adjustment." Carbohydrate polymers 180 (2018): 231-237. https://www.sciencedirect.com/science/article/abs/pii/S0144861717311633
- 15. Khankari RK, Hontz J. Binders and Solvents. In: Parikh DM, editor. Handbook of Pharmaceutical granulation technology. New York: Marcel Dekker Inc; 1997. p. 59-75. https://www.gmpua.com/Process/Tablet/Granulation/GranulationTechnology.pdf
- 16. Saha S, Shahiwala AF. Multifunctional coprocessed excipients for improved tabletting performance. Expert Opin Drug Deliv. 2009 Feb;6(2):197-208. doi: 10.1517/17425240802708978. PMID: 19239391. https://pubmed.ncbi.nlm.nih.gov/19239391/
- 17. Krogars K, Heinämäki J, Vesalahti J, Marvola M, Antikainen O, Yliruusi J. Extrusion-spheronization of pH-sensitive polymeric matrix pellets for possible colonic drug delivery. Int J Pharm. 2000 Apr 20;199(2):187-94. doi: 10.1016/s0378-5173(00)00382-3. PMID: 10802412. https://pubmed.ncbi.nlm.nih.gov/10802412/
- 18. Jain SP, Singh PP, Amin PD. Alternative extrusion-spheronization aids. Drug Dev Ind Pharm. 2010 Nov;36(11):1364-76. doi: 10.3109/03639045.2010.482590. PMID: 20521907. https://pubmed.ncbi.nlm.nih.gov/20521907/
- 19. Landin, M., et al. "Effect of batch variation and source of pulp on the properties of microcrystalline cellulose." International journal of pharmaceutics 91.2-3 (1993): 133-141. https://www.sciencedirect.com/science/article/abs/pii/037851739390332A
- 20. Bolhuis, Gerad, and Zak Chowhan. "Materials for direct compaction." Drugs and the Pharmaceutical Sciences (1995): 419-500. https://cir.nii.ac.jp/crid/1360011145276109824
- 21. Guo, Mintong, Francis X. Muller, and Larry L. Augsburger. "Evaluation of the plug formation process of silicified microcrystalline cellulose." International journal of pharmaceutics 233.1-2 (2002): 99-109. https://www.sciencedirect.com/science/article/abs/pii/S0378517301009310
- 22. Chaerunisaa, Anis & Sriwidodo, Sriwidodo & Abdassah, Marline. (2019). Microcrystalline Cellulose as Pharmaceutical Excipient. 10.5772/intechopen.88092. https://www.researchgate.net/publication/334717784_Microcrystalline_Cellulose_as_Pharmaceutical_Excipient
- 23. Hazdi SN, Phang HC, Ng ZQ, Chew YL, Uddin AH, Sarker ZI, Lee SK, Liew KB. Development of a Novel Co-processed Excipitient Comprising of Xylitol, Mannitol, Microcrystalline Cellulose, and Crospovidone for the Compounding of Memantine Hydrochloride Orally Disintegrating Tablet. Int J Pharm Compd. 2023 Nov-ec;27(6):522-527. PMID: 38100670. https://pubmed.ncbi.nlm.nih.gov/38100670/
- 24. Abu Fara D, Rashid I, Al-Hmoud L, Chowdhry BZ, Badwan AA. A New Perspective of Multiple Roller Compaction of Microcrystalline Cellulose for Overcoming Re-Compression Drawbacks in Tableting Processing. Applied Sciences. 2020; 10(14):4787. https://doi.org/10.3390/app10144787
- 25. Khammak, Puttachat. "Dust Explosion Risk Assessment In The Storage Bin Of Microcrystalline Cellulose By Fault Tree Analysis." Procedia of Multidisciplinary Research 1.9 (2023): 23-23. https://so09.tci-thaijo.org/index.php/PMR/article/view/3188
- 26. Hassan, Junaid, et al. "Industry specific dust explosion likelihood assessment model with case studies." Journal of Chemical Health and Safety 21.2 (2014): 13-27. https://www.sciencedirect.com/science/article/abs/pii/S1871553213006166
- 27. Krueger C, Thommes M, Kleinebudde P. Influence of storage condition on properties of MCC II-based pellets with theophylline-monohydrate. Eur J Pharm Biopharm. 2014 Oct;88(2):483-91. doi: 10.1016/j.ejpb.2014.06.006. Epub 2014 Jun 17. PMID: 24950003. https://pubmed.ncbi.nlm.nih.gov/24950003/
- 28. Spoljaric, Steven, Antonietta Genovese, and Robert A. Shanks. "Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties." Composites Part A: Applied Science and Manufacturing 40.6-7 (2009): 791-799.
- https://www.sciencedirect.com/science/article/abs/pii/S1359835X09000803
- 29. de Lourdes Garzón, M., and Leopoldo Villafuerte. "Compactibility of mixtures of calcium carbonate and microcrystalline cellulose." International journal of pharmaceutics 231.1 (2002): 33-41. https://www.sciencedirect.com/science/article/abs/pii/S0378517301008572
- 30. Dastjerdi, Shahriar, et al. "On the mechanical analysis of microcrystalline cellulose sheets." International Journal of Engineering Science 166 (2021): 103500.
- https://www.sciencedirect.com/science/article/abs/pii/S0020722521000471
- 31. Yaginuma, Yoshihito, and Tsuyoshi Kijima. "Effect of pH on rheological properties of microcrystalline cellulose dispersions." Journal of dispersion science and technology 27.3 (2006): 365-370. https://www.tandfonline.com/doi/full/10.1080/01932690500359483
- 32. Nwachukwu, Nkemakolam, and Sabinus Ifeanyi Ofoefule. "Effect of drying methods on the powder and compaction properties of microcrystalline cellulose derived from Gossypium herbaceum." Brazilian Journal of Pharmaceutical Sciences 56 (2020): e18660.
- https://www.scielo.br/j/bjps/a/TpjCX6Y45KbX3JvmjDfqQHD/?lang=en
- 33. Ek, Ragnar, Göran Alderborn, and Christer Nyström. "Particle analysis of microcrystalline cellulose: differentiation between individual particles and their agglomerates." International journal of pharmaceutics 111.1 (1994): 43-50.
- https://www.sciencedirect.com/science/article/abs/pii/0378517394904006
- 34. Ann S Ng J. Evaluation of Microcrystalline Cellulose Derived from Saccharum officinarum L. (Sugarcane) Leaves as a Disintegrant in Tablet Formulations. Adv Pharm Bull. 2020 Jul;10(3):418-422. doi: 10.34172/apb.2020.050. Epub 2020 May 11. PMID: 32665900; PMCID: PMC7335985. https://pmc.ncbi.nlm.nih.gov/articles/PMC7335985/
- 35. Shi, Limin, Sayantan Chattoraj, and Changquan Calvin Sun. "Reproducibility of flow properties of microcrystalline cellulose—Avicel PH102." Powder technology 212.1 (2011): 253-257. https://www.sciencedirect.com/science/article/abs/pii/S0032591011002816?via%3Dihub
References
1. Yohana Chaerunisaa A, Sriwidodo S and Abdassah M (2020) Microcrystalline Cellulose as Pharmaceutical Excipient. Pharmaceutical Formulation Design - Recent Practices. Intech Open. Available at: https://www.intechopen.com/chapters/68199
2. Trache, Djalal, et al. "Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review." International Journal of Biological Macromolecules 93 (2016): 789-804. https://www.sciencedirect.com/science/article/abs/pii/S0141813016310169
3. Chaerunisaa, Anis Yohana, Sriwidodo Sriwidodo, and Marline Abdassah. "Microcrystalline cellulose as pharmaceutical excipient." Pharmaceutical formulation design-recent practices. IntechOpen, 2019. https://www.researchgate.net/publication/334717784_Microcrystalline_Cellulose_as_Pharmaceutical_Excipient/fulltext/5d3bc1d192851cd0468a1a2a/Microcrystalline-Cellulose-as-Pharmaceutical-Excipient.pdf
4. Bhandari, Kunal, et al. "Synthesis of microcrystalline cellulose from carpenter waste and its characterizations." Journal of Natural Fibers 19.6 (2022): 1975-1989. https://www.tandfonline.com/doi/full/10.1080/15440478.2020.1788688#abstract
5. Thoorens, Gregory, et al. "Microcrystalline cellulose, a direct compression binder in a quality by design environment—A review." International journal of pharmaceutics 473.1-2 (2014): 64-72. https://www.sciencedirect.com/science/article/pii/S0378517314004840
6. Kambli, Nishant D., et al. "Synthesis and characterization of microcrystalline cellulose powder from corn husk fibres using bio-chemical route." Cellulose 24 (2017): 5355-5369. https://link.springer.com/article/10.1007/s10570-017-1522-4
7. Trache, Djalal. "Microcrystalline cellulose and related polymer composites: synthesis, characterization and properties." Handbook of composites from renewable materials, structure and chemistry 1 (2016): 61-92.
8. Adeleye OA, etal.,Characterizations of Alpha-Cellulose and Microcrystalline Cellulose Isolated from Cocoa Pod Husk as a Potential Pharmaceutical Excipient. Materials (Basel). 2022 Aug 30;15(17):5992. doi: 10.3390/ma15175992.
9. Tasnim, S.; etal., Modification of Bulk Density, Flow Property and Crystallinity of Microcrystalline Cellulose Prepared from Waste Cotton. Materials 2023, 16, 5664. https://doi.org/10.3390/ma16165664.
10. Liberto, E.A.; Dintcheva, N.T. Biobased Films Based on Chitosan and Microcrystalline Cellulose for Sustainable Packaging Applications. Polymers 2024, 16, 568. https://doi.org/10.3390/polym16050568.
11. Janssen, P. H. M., Fathollahi, S., Dickhoff, B. H. J., & Frijlink, H. W. (2024). Critical review on the role of excipient properties in pharmaceutical powder-to-tablet continuous manufacturing. Expert Opinion on Drug Delivery, 21(7), 1069–1079. https://doi.org/10.1080/17425247.2024.2384698
12. Shlieout, G., Arnold, K. & Müller, G. Powder and mechanical properties of microcrystalline cellulose with different degrees of polymerization. AAPS PharmSciTech 3, 11 (2002). https://doi.org/10.1208/pt030211
13. Kuo, Yen‐Ning, and Juan Hong. "Investigation of solubility of microcrystalline cellulose in aqueous NaOH." Polymers for advanced technologies 16.5 (2005): 425-428. https://onlinelibrary.wiley.com/doi/abs/10.1002/pat.595
14. Choe, Deokyeong, et al. "Synthesis of high-strength microcrystalline cellulose hydrogel by viscosity adjustment." Carbohydrate polymers 180 (2018): 231-237. https://www.sciencedirect.com/science/article/abs/pii/S0144861717311633
15. Khankari RK, Hontz J. Binders and Solvents. In: Parikh DM, editor. Handbook of Pharmaceutical granulation technology. New York: Marcel Dekker Inc; 1997. p. 59-75. https://www.gmpua.com/Process/Tablet/Granulation/GranulationTechnology.pdf
16. Saha S, Shahiwala AF. Multifunctional coprocessed excipients for improved tabletting performance. Expert Opin Drug Deliv. 2009 Feb;6(2):197-208. doi: 10.1517/17425240802708978. PMID: 19239391. https://pubmed.ncbi.nlm.nih.gov/19239391/
17. Krogars K, Heinämäki J, Vesalahti J, Marvola M, Antikainen O, Yliruusi J. Extrusion-spheronization of pH-sensitive polymeric matrix pellets for possible colonic drug delivery. Int J Pharm. 2000 Apr 20;199(2):187-94. doi: 10.1016/s0378-5173(00)00382-3. PMID: 10802412. https://pubmed.ncbi.nlm.nih.gov/10802412/
18. Jain SP, Singh PP, Amin PD. Alternative extrusion-spheronization aids. Drug Dev Ind Pharm. 2010 Nov;36(11):1364-76. doi: 10.3109/03639045.2010.482590. PMID: 20521907. https://pubmed.ncbi.nlm.nih.gov/20521907/
19. Landin, M., et al. "Effect of batch variation and source of pulp on the properties of microcrystalline cellulose." International journal of pharmaceutics 91.2-3 (1993): 133-141. https://www.sciencedirect.com/science/article/abs/pii/037851739390332A
20. Bolhuis, Gerad, and Zak Chowhan. "Materials for direct compaction." Drugs and the Pharmaceutical Sciences (1995): 419-500. https://cir.nii.ac.jp/crid/1360011145276109824
21. Guo, Mintong, Francis X. Muller, and Larry L. Augsburger. "Evaluation of the plug formation process of silicified microcrystalline cellulose." International journal of pharmaceutics 233.1-2 (2002): 99-109. https://www.sciencedirect.com/science/article/abs/pii/S0378517301009310
22. Chaerunisaa, Anis & Sriwidodo, Sriwidodo & Abdassah, Marline. (2019). Microcrystalline Cellulose as Pharmaceutical Excipient. 10.5772/intechopen.88092. https://www.researchgate.net/publication/334717784_Microcrystalline_Cellulose_as_Pharmaceutical_Excipient
23. Hazdi SN, Phang HC, Ng ZQ, Chew YL, Uddin AH, Sarker ZI, Lee SK, Liew KB. Development of a Novel Co-processed Excipitient Comprising of Xylitol, Mannitol, Microcrystalline Cellulose, and Crospovidone for the Compounding of Memantine Hydrochloride Orally Disintegrating Tablet. Int J Pharm Compd. 2023 Nov-ec;27(6):522-527. PMID: 38100670. https://pubmed.ncbi.nlm.nih.gov/38100670/
24. Abu Fara D, Rashid I, Al-Hmoud L, Chowdhry BZ, Badwan AA. A New Perspective of Multiple Roller Compaction of Microcrystalline Cellulose for Overcoming Re-Compression Drawbacks in Tableting Processing. Applied Sciences. 2020; 10(14):4787. https://doi.org/10.3390/app10144787
25. Khammak, Puttachat. "Dust Explosion Risk Assessment In The Storage Bin Of Microcrystalline Cellulose By Fault Tree Analysis." Procedia of Multidisciplinary Research 1.9 (2023): 23-23. https://so09.tci-thaijo.org/index.php/PMR/article/view/3188
26. Hassan, Junaid, et al. "Industry specific dust explosion likelihood assessment model with case studies." Journal of Chemical Health and Safety 21.2 (2014): 13-27. https://www.sciencedirect.com/science/article/abs/pii/S1871553213006166
27. Krueger C, Thommes M, Kleinebudde P. Influence of storage condition on properties of MCC II-based pellets with theophylline-monohydrate. Eur J Pharm Biopharm. 2014 Oct;88(2):483-91. doi: 10.1016/j.ejpb.2014.06.006. Epub 2014 Jun 17. PMID: 24950003. https://pubmed.ncbi.nlm.nih.gov/24950003/
28. Spoljaric, Steven, Antonietta Genovese, and Robert A. Shanks. "Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties." Composites Part A: Applied Science and Manufacturing 40.6-7 (2009): 791-799.
https://www.sciencedirect.com/science/article/abs/pii/S1359835X09000803
29. de Lourdes Garzón, M., and Leopoldo Villafuerte. "Compactibility of mixtures of calcium carbonate and microcrystalline cellulose." International journal of pharmaceutics 231.1 (2002): 33-41. https://www.sciencedirect.com/science/article/abs/pii/S0378517301008572
30. Dastjerdi, Shahriar, et al. "On the mechanical analysis of microcrystalline cellulose sheets." International Journal of Engineering Science 166 (2021): 103500.
https://www.sciencedirect.com/science/article/abs/pii/S0020722521000471
31. Yaginuma, Yoshihito, and Tsuyoshi Kijima. "Effect of pH on rheological properties of microcrystalline cellulose dispersions." Journal of dispersion science and technology 27.3 (2006): 365-370. https://www.tandfonline.com/doi/full/10.1080/01932690500359483
32. Nwachukwu, Nkemakolam, and Sabinus Ifeanyi Ofoefule. "Effect of drying methods on the powder and compaction properties of microcrystalline cellulose derived from Gossypium herbaceum." Brazilian Journal of Pharmaceutical Sciences 56 (2020): e18660.
https://www.scielo.br/j/bjps/a/TpjCX6Y45KbX3JvmjDfqQHD/?lang=en
33. Ek, Ragnar, Göran Alderborn, and Christer Nyström. "Particle analysis of microcrystalline cellulose: differentiation between individual particles and their agglomerates." International journal of pharmaceutics 111.1 (1994): 43-50.
https://www.sciencedirect.com/science/article/abs/pii/0378517394904006
34. Ann S Ng J. Evaluation of Microcrystalline Cellulose Derived from Saccharum officinarum L. (Sugarcane) Leaves as a Disintegrant in Tablet Formulations. Adv Pharm Bull. 2020 Jul;10(3):418-422. doi: 10.34172/apb.2020.050. Epub 2020 May 11. PMID: 32665900; PMCID: PMC7335985. https://pmc.ncbi.nlm.nih.gov/articles/PMC7335985/
35. Shi, Limin, Sayantan Chattoraj, and Changquan Calvin Sun. "Reproducibility of flow properties of microcrystalline cellulose—Avicel PH102." Powder technology 212.1 (2011): 253-257. https://www.sciencedirect.com/science/article/abs/pii/S0032591011002816?via%3Dihub