Main Article Content
Abstract
Injectable hydrogels have become a promising platform for cancer treatment, especially for tissue engineering, tumour ablation, and localized drug delivery. These hydrogels, which offer a supporting matrix for drug release and cellular penetration, are usually made of biocompatible and biodegradable polymers that are simple to inject and then gel in place. Synthetic Polymers like poly(ethylene glycol) (PEG), poly(lactic-co-glycolic acid) (PLGA), and polycaprolactone (PCL), are important polymers utilized in injectable hydrogels.A cutting-edge development in cancer treatment, injectable hydrogels offer a flexible foundation for tissue regeneration, localized therapy, and targeted drug administration. These intelligent materials can be engineered to deliver chemotherapy drugs under controlled conditions, precisely targeting tumors and reducing systemic toxicity. Because they can be injected, less invasive administration is made possible, allowing for direct placement at the tumor site. This improves medication absorption and therapeutic efficacy. Because of its responsiveness, drug release can be synchronized with the course of the disease, potentially improving patient outcomes. Injectable hydrogels have the potential to revolutionize cancer therapy paradigms by fusing targeted delivery with regeneration capabilities. This offers hope for increased efficacy and better patient outcomes.
Keywords
Article Details
References
- 1. Cohen J, Pivodic L, Miccinesi G, Onwuteaka-Philipsen BD, Naylor WA, Wilson DM, Loucka M, Csikos A, Pardon K, Van den Block L, Ruiz-Ramos M. International study of the place of death of people with cancer: a population-level comparison of 14 countries across 4 continents using death certificate data. British journal of cancer. 2015 Nov;113(9):1397-404.
- 2. Elias PZ, Liu GW, Wei H, Jensen MC, Horner PJ, Pun SH. A functionalized, injectable hydrogel for localized drug delivery with tunable thermosensitivity: synthesis and characterization of physical and toxicological properties. Journal of controlled release. 2015 Jun 28;208:76-84.
- 3. Li Y, Rodrigues J, Tomás H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chemical Society Reviews. 2012;41(6):2193-221.
- 4. Yu S, He C, Chen X. Injectable hydrogels as unique platforms for local chemotherapeutics‐based combination antitumor therapy. Macromolecular bioscience. 2018 Dec;18(12):1800240.
- 5. Yang Y, Wang X, Yang F, Shen H, Wu D. A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels. Advanced Materials (Deerfield Beach, Fla.). 2016 Jun 14;28(33):7178-84.
- 6. Bu Y, Shen H, Yang F, Yang Y, Wang X, Wu D. Construction of tough, in situ forming double-network hydrogels with good biocompatibility. ACS Applied Materials & Interfaces. 2017 Jan 25;9(3):2205-12.
- 7. Bin Imran A, Esaki K, Gotoh H, Seki T, Ito K, Sakai Y, Takeoka Y. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nature communications. 2014 Oct 8;5(1):5124.
- 8. Zhang J, Wang X, Wang L, Yang F, Wu D. Controlled cross-linking strategy for formation of hydrogels, microgels and nanogels. Journal of Controlled Release. 2015; 100(213):e25.
- 9. Qi Y, Qian Z, Yuan W, Li Z. Injectable and self-healing nanocomposite hydrogel loading needle-like nano-hydroxyapatite and graphene oxide for synergistic tumour proliferation inhibition and photothermal therapy. Journal of Materials Chemistry B. 2021;9(47):9734-43.
- 10. Xiong L, Luo Q, Wang Y, Li X, Shen Z, Zhu W. An injectable drug-loaded hydrogel based on a supramolecular polymeric prodrug. Chemical Communications. 2015;51(78):14644-7.
- 11. Eshrati Yeganeh F, Eshrati Yeganeh A, Fatemizadeh M, Farasati Far B, Quazi S, Safdar M. In vitro cytotoxicity and anti-cancer drug release behavior of methionine-coated magnetite nanoparticles as carriers. Medical Oncology. 2022 Oct 12;39(12):252.
- 12. Hu W, Wang Z, Xiao Y, Zhang S, Wang J. Advances in crosslinking strategies of biomedical hydrogels. Biomaterials science. 2019;7(3):843-55.
- 13. Allcock HR, Morozowich NL. Bioerodiblepolyphosphazenes and their medical potential. Polymer Chemistry. 2012;3(3):578-90.
- 14. Baillargeon AL, Mequanint K. Biodegradable polyphosphazene biomaterials for tissue engineering and delivery of therapeutics. BioMed research international. 2014;2014(1):761373.
- 15. Singh A, Krogman NR, Sethuraman S, Nair LS, Sturgeon JL, Brown PW, Laurencin CT, Allcock HR. Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes. Biomacromolecules. 2006 Mar 13;7(3):914-8.
- 16. Cho JK, Hong KY, Park JW, Yang HK, Song SC. Injectable delivery system of 2-methoxyestradiol for breast cancer therapy using biodegradable thermosensitive poly (organophosphazene) hydrogel. Journal of drug targeting. 2011 May 1;19(4):270-80.
- 17. Akash MS, Rehman K. Recent progress in biomedical applications of Pluronic (PF127): Pharmaceutical perspectives. Journal of Controlled Release. 2015 Jul 10;209:120-38.
- 18. Moebus K, Siepmann J, Bodmeier R. Alginate–poloxamer microparticles for controlled drug delivery to mucosal tissue. European Journal of Pharmaceutics and Biopharmaceutics. 2009 May 1;72(1):42-53.
- 19. Cabana A, Aı̈t-Kadi A, Juhász J. Study of the gelation process of polyethylene oxidea–polypropylene oxideb–polyethylene oxideacopolymer (poloxamer 407) aqueous solutions. Journal of colloid and interface science. 1997 Jun 15;190(2):307-12.
- 20. Fu JJ, Chen MY, Li JX, Zhou JH, Xie SN, Yuan P, Tang B, Liu CC. RETRACTED ARTICLE: Injectable hydrogel encapsulating Cu 2 MnS 2 nanoplates for photothermal therapy against breast cancer. Journal of Nanobiotechnology. 2018 Dec;16:1-5.
- 21. Gao L, Wang X, Ma J, Hao D, Wei P, Zhou L, Liu G. Evaluation of TPGS-modified thermo-sensitive Pluronic PF127 hydrogel as a potential carrier to reverse the resistance of P-gp-overexpressing SMMC-7721 cell lines. Colloids and Surfaces B: Biointerfaces. 2016 Apr 1; 140:307-16.
- 22. Khan S, Minhas MU, Ahmad M, Sohail M. Self-assembled supramolecular thermoreversible β-cyclodextrin/ethylene glycol injectable hydrogels with difunctional Pluronic® 127 as controlled delivery depot of curcumin. Development, characterization and in vitro evaluation. Journal of Biomaterials Science, Polymer Edition. 2018 Jan 2;29(1):1-34.
- 23. Hu X, Li D, Tan H, Pan C, Chen X. Injectable graphene oxide/graphene composite supramolecular hydrogel for delivery of anti-cancer drugs. Journal of Macromolecular Science, Part A. 2014 Apr 3;51(4):378-84.
- 24. Choi B, Lee M. Injectable hydrogels for articular cartilage regeneration. World Scientific Publishing, Singapore; 2016.
- 25. Shi K, Xue B, Jia Y, Yuan L, Han R, Yang F, Peng J, Qian Z. Sustained co-delivery of gemcitabine and cis-platinum via biodegradable thermo-sensitive hydrogel for synergistic combination therapy of pancreatic cancer. Nano Research. 2019 Jun; 12:1389-99.
- 26. Fan R, Tong A, Li X, Gao X, Mei L, Zhou L, Zhang X, You C, Guo G. Enhanced antitumor effects by docetaxel/LL37-loaded thermosensitive hydrogel nanoparticles in peritoneal carcinomatosis of colorectal cancer. International journal of nanomedicine. 2015 Dec 3:7291-305.
- 27. Ma H, He C, Cheng Y, Yang Z, Zang J, Liu J, Chen X. Localized co-delivery of doxorubicin, cisplatin, and methotrexate by thermosensitive hydrogels for enhanced osteosarcoma treatment. ACS applied materials & interfaces. 2015 Dec 16;7(49):27040-8.
- 28. Chang G, Ci T, Yu L, Ding J. Enhancement of the fraction of the active form of an antitumor drug topotecan via an injectable hydrogel. Journal of controlled release. 2011 Nov 30;156(1):21-7.
- 29. Gong C, Wang C, Wang Y, Wu Q, Zhang D, Luo F, Qian Z. Efficient inhibition of colorectal peritoneal carcinomatosis by drug loaded micelles in thermosensitive hydrogel composites. Nanoscale. 2012;4(10):3095-104.
- 30. Lei N, Gong C, Qian Z, Luo F, Wang C, Wang H, Wei Y. Therapeutic application of injectable thermosensitive hydrogel in preventing local breast cancer recurrence and improving incision wound healing in a mouse model. Nanoscale. 2012;4(18):5686-93.
- 31. Kunz-Schughart LA, Dubrovska A, Peitzsch C, Ewe A, Aigner A, Schellenburg S, Muders MH, Hampel S, Cirillo G, Iemma F, Tietze R. Nanoparticles for radiooncology: Mission, vision, challenges. Biomaterials. 2017 Mar 1;120:155-84.
- 32. Peng CL, Shih YH, Liang KS, Chiang PF, Yeh CH, Tang IC, Yao CJ, Lee SY, Luo TY, Shieh MJ. Development of in situ forming thermosensitive hydrogel for radiotherapy combined with chemotherapy in a mouse model of hepatocellular carcinoma. Molecular Pharmaceutics. 2013 May 6;10(5):1854-64.
- 33. Leprince JG, Palin WM, Hadis MA, Devaux J, Leloup G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dental Materials. 2013 Feb 1;29(2):139-56.
- 34. Song Z, Han Z, Lv S, Chen C, Chen L, Yin L, Cheng J. Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application. Chemical Society Reviews. 2017;46(21):6570-99.
- 35. Singh SK, Singh S, Lillard Jr JW, Singh R. Drug delivery approaches for breast cancer. International journal of nanomedicine. 2017 Aug 24:6205-18.
- 36. Karimi AR, Khodadadi A, Hadizadeh M. A nanoporous photosensitizing hydrogel based on chitosan cross-linked by zinc phthalocyanine: an injectable and pH-stimuli responsive system for effective cancer therapy. RSC advances. 2016;6(94):91445-52.
- 37. Abdel-Bar HM, Abdel-Reheem AY, Osman R, Awad GA, Mortada N. Defining cisplatin incorporation properties in thermosensitive injectable biodegradable hydrogel for sustained delivery and enhanced cytotoxicity. International journal of pharmaceutics. 2014 Dec 30;477(1-2):623-30.
- 38. Alexander A, Khan J, Saraf S, Saraf S. Formulation and evaluation of chitosan-based long-acting injectable hydrogel for PEGylated melphalan conjugate. Journal of Pharmacy and Pharmacology. 2014 Sep;66(9):1240-50.
- 39. Burdick JA. Injectable gels for tissue/organ repair. Biomedical Materials. 2012 Apr 1;7(2):020201.
- 40. Ueda K, Akiba J, Ogasawara S, Todoroki K, Nakayama M, Sumi A, Kusano H, Sanada S, Suekane S, Xu K, Bae KH. Growth inhibitory effect of an injectable hyaluronic acid–tyramine hydrogels incorporating human natural interferon-α and sorafenib on renal cell carcinoma cells. Acta biomaterialia. 2016 Jan 1;29:103-11.
- 41. Carlini AS, Gaetani R, Braden RL, Luo C, Christman KL, Gianneschi NC. Enzyme-responsive progelator cyclic peptides for minimally invasive delivery to the heart post-myocardial infarction. Nature communications. 2019 Apr 15;10(1):1735.
- 42. Upadhyay A, Kandi R, Rao CP. Injectable, self-healing, and stress sustainable hydrogel of BSA as a functional biocompatible material for controlled drug delivery in cancer cells. ACS Sustainable Chemistry & Engineering. 2018 Jan 16;6(3):3321-30.
References
1. Cohen J, Pivodic L, Miccinesi G, Onwuteaka-Philipsen BD, Naylor WA, Wilson DM, Loucka M, Csikos A, Pardon K, Van den Block L, Ruiz-Ramos M. International study of the place of death of people with cancer: a population-level comparison of 14 countries across 4 continents using death certificate data. British journal of cancer. 2015 Nov;113(9):1397-404.
2. Elias PZ, Liu GW, Wei H, Jensen MC, Horner PJ, Pun SH. A functionalized, injectable hydrogel for localized drug delivery with tunable thermosensitivity: synthesis and characterization of physical and toxicological properties. Journal of controlled release. 2015 Jun 28;208:76-84.
3. Li Y, Rodrigues J, Tomás H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chemical Society Reviews. 2012;41(6):2193-221.
4. Yu S, He C, Chen X. Injectable hydrogels as unique platforms for local chemotherapeutics‐based combination antitumor therapy. Macromolecular bioscience. 2018 Dec;18(12):1800240.
5. Yang Y, Wang X, Yang F, Shen H, Wu D. A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels. Advanced Materials (Deerfield Beach, Fla.). 2016 Jun 14;28(33):7178-84.
6. Bu Y, Shen H, Yang F, Yang Y, Wang X, Wu D. Construction of tough, in situ forming double-network hydrogels with good biocompatibility. ACS Applied Materials & Interfaces. 2017 Jan 25;9(3):2205-12.
7. Bin Imran A, Esaki K, Gotoh H, Seki T, Ito K, Sakai Y, Takeoka Y. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nature communications. 2014 Oct 8;5(1):5124.
8. Zhang J, Wang X, Wang L, Yang F, Wu D. Controlled cross-linking strategy for formation of hydrogels, microgels and nanogels. Journal of Controlled Release. 2015; 100(213):e25.
9. Qi Y, Qian Z, Yuan W, Li Z. Injectable and self-healing nanocomposite hydrogel loading needle-like nano-hydroxyapatite and graphene oxide for synergistic tumour proliferation inhibition and photothermal therapy. Journal of Materials Chemistry B. 2021;9(47):9734-43.
10. Xiong L, Luo Q, Wang Y, Li X, Shen Z, Zhu W. An injectable drug-loaded hydrogel based on a supramolecular polymeric prodrug. Chemical Communications. 2015;51(78):14644-7.
11. Eshrati Yeganeh F, Eshrati Yeganeh A, Fatemizadeh M, Farasati Far B, Quazi S, Safdar M. In vitro cytotoxicity and anti-cancer drug release behavior of methionine-coated magnetite nanoparticles as carriers. Medical Oncology. 2022 Oct 12;39(12):252.
12. Hu W, Wang Z, Xiao Y, Zhang S, Wang J. Advances in crosslinking strategies of biomedical hydrogels. Biomaterials science. 2019;7(3):843-55.
13. Allcock HR, Morozowich NL. Bioerodiblepolyphosphazenes and their medical potential. Polymer Chemistry. 2012;3(3):578-90.
14. Baillargeon AL, Mequanint K. Biodegradable polyphosphazene biomaterials for tissue engineering and delivery of therapeutics. BioMed research international. 2014;2014(1):761373.
15. Singh A, Krogman NR, Sethuraman S, Nair LS, Sturgeon JL, Brown PW, Laurencin CT, Allcock HR. Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes. Biomacromolecules. 2006 Mar 13;7(3):914-8.
16. Cho JK, Hong KY, Park JW, Yang HK, Song SC. Injectable delivery system of 2-methoxyestradiol for breast cancer therapy using biodegradable thermosensitive poly (organophosphazene) hydrogel. Journal of drug targeting. 2011 May 1;19(4):270-80.
17. Akash MS, Rehman K. Recent progress in biomedical applications of Pluronic (PF127): Pharmaceutical perspectives. Journal of Controlled Release. 2015 Jul 10;209:120-38.
18. Moebus K, Siepmann J, Bodmeier R. Alginate–poloxamer microparticles for controlled drug delivery to mucosal tissue. European Journal of Pharmaceutics and Biopharmaceutics. 2009 May 1;72(1):42-53.
19. Cabana A, Aı̈t-Kadi A, Juhász J. Study of the gelation process of polyethylene oxidea–polypropylene oxideb–polyethylene oxideacopolymer (poloxamer 407) aqueous solutions. Journal of colloid and interface science. 1997 Jun 15;190(2):307-12.
20. Fu JJ, Chen MY, Li JX, Zhou JH, Xie SN, Yuan P, Tang B, Liu CC. RETRACTED ARTICLE: Injectable hydrogel encapsulating Cu 2 MnS 2 nanoplates for photothermal therapy against breast cancer. Journal of Nanobiotechnology. 2018 Dec;16:1-5.
21. Gao L, Wang X, Ma J, Hao D, Wei P, Zhou L, Liu G. Evaluation of TPGS-modified thermo-sensitive Pluronic PF127 hydrogel as a potential carrier to reverse the resistance of P-gp-overexpressing SMMC-7721 cell lines. Colloids and Surfaces B: Biointerfaces. 2016 Apr 1; 140:307-16.
22. Khan S, Minhas MU, Ahmad M, Sohail M. Self-assembled supramolecular thermoreversible β-cyclodextrin/ethylene glycol injectable hydrogels with difunctional Pluronic® 127 as controlled delivery depot of curcumin. Development, characterization and in vitro evaluation. Journal of Biomaterials Science, Polymer Edition. 2018 Jan 2;29(1):1-34.
23. Hu X, Li D, Tan H, Pan C, Chen X. Injectable graphene oxide/graphene composite supramolecular hydrogel for delivery of anti-cancer drugs. Journal of Macromolecular Science, Part A. 2014 Apr 3;51(4):378-84.
24. Choi B, Lee M. Injectable hydrogels for articular cartilage regeneration. World Scientific Publishing, Singapore; 2016.
25. Shi K, Xue B, Jia Y, Yuan L, Han R, Yang F, Peng J, Qian Z. Sustained co-delivery of gemcitabine and cis-platinum via biodegradable thermo-sensitive hydrogel for synergistic combination therapy of pancreatic cancer. Nano Research. 2019 Jun; 12:1389-99.
26. Fan R, Tong A, Li X, Gao X, Mei L, Zhou L, Zhang X, You C, Guo G. Enhanced antitumor effects by docetaxel/LL37-loaded thermosensitive hydrogel nanoparticles in peritoneal carcinomatosis of colorectal cancer. International journal of nanomedicine. 2015 Dec 3:7291-305.
27. Ma H, He C, Cheng Y, Yang Z, Zang J, Liu J, Chen X. Localized co-delivery of doxorubicin, cisplatin, and methotrexate by thermosensitive hydrogels for enhanced osteosarcoma treatment. ACS applied materials & interfaces. 2015 Dec 16;7(49):27040-8.
28. Chang G, Ci T, Yu L, Ding J. Enhancement of the fraction of the active form of an antitumor drug topotecan via an injectable hydrogel. Journal of controlled release. 2011 Nov 30;156(1):21-7.
29. Gong C, Wang C, Wang Y, Wu Q, Zhang D, Luo F, Qian Z. Efficient inhibition of colorectal peritoneal carcinomatosis by drug loaded micelles in thermosensitive hydrogel composites. Nanoscale. 2012;4(10):3095-104.
30. Lei N, Gong C, Qian Z, Luo F, Wang C, Wang H, Wei Y. Therapeutic application of injectable thermosensitive hydrogel in preventing local breast cancer recurrence and improving incision wound healing in a mouse model. Nanoscale. 2012;4(18):5686-93.
31. Kunz-Schughart LA, Dubrovska A, Peitzsch C, Ewe A, Aigner A, Schellenburg S, Muders MH, Hampel S, Cirillo G, Iemma F, Tietze R. Nanoparticles for radiooncology: Mission, vision, challenges. Biomaterials. 2017 Mar 1;120:155-84.
32. Peng CL, Shih YH, Liang KS, Chiang PF, Yeh CH, Tang IC, Yao CJ, Lee SY, Luo TY, Shieh MJ. Development of in situ forming thermosensitive hydrogel for radiotherapy combined with chemotherapy in a mouse model of hepatocellular carcinoma. Molecular Pharmaceutics. 2013 May 6;10(5):1854-64.
33. Leprince JG, Palin WM, Hadis MA, Devaux J, Leloup G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dental Materials. 2013 Feb 1;29(2):139-56.
34. Song Z, Han Z, Lv S, Chen C, Chen L, Yin L, Cheng J. Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application. Chemical Society Reviews. 2017;46(21):6570-99.
35. Singh SK, Singh S, Lillard Jr JW, Singh R. Drug delivery approaches for breast cancer. International journal of nanomedicine. 2017 Aug 24:6205-18.
36. Karimi AR, Khodadadi A, Hadizadeh M. A nanoporous photosensitizing hydrogel based on chitosan cross-linked by zinc phthalocyanine: an injectable and pH-stimuli responsive system for effective cancer therapy. RSC advances. 2016;6(94):91445-52.
37. Abdel-Bar HM, Abdel-Reheem AY, Osman R, Awad GA, Mortada N. Defining cisplatin incorporation properties in thermosensitive injectable biodegradable hydrogel for sustained delivery and enhanced cytotoxicity. International journal of pharmaceutics. 2014 Dec 30;477(1-2):623-30.
38. Alexander A, Khan J, Saraf S, Saraf S. Formulation and evaluation of chitosan-based long-acting injectable hydrogel for PEGylated melphalan conjugate. Journal of Pharmacy and Pharmacology. 2014 Sep;66(9):1240-50.
39. Burdick JA. Injectable gels for tissue/organ repair. Biomedical Materials. 2012 Apr 1;7(2):020201.
40. Ueda K, Akiba J, Ogasawara S, Todoroki K, Nakayama M, Sumi A, Kusano H, Sanada S, Suekane S, Xu K, Bae KH. Growth inhibitory effect of an injectable hyaluronic acid–tyramine hydrogels incorporating human natural interferon-α and sorafenib on renal cell carcinoma cells. Acta biomaterialia. 2016 Jan 1;29:103-11.
41. Carlini AS, Gaetani R, Braden RL, Luo C, Christman KL, Gianneschi NC. Enzyme-responsive progelator cyclic peptides for minimally invasive delivery to the heart post-myocardial infarction. Nature communications. 2019 Apr 15;10(1):1735.
42. Upadhyay A, Kandi R, Rao CP. Injectable, self-healing, and stress sustainable hydrogel of BSA as a functional biocompatible material for controlled drug delivery in cancer cells. ACS Sustainable Chemistry & Engineering. 2018 Jan 16;6(3):3321-30.