Main Article Content


The formulation of only moderately water-soluble pharmaceuticals can benefit from the incorporation of nanoparticles, which increases the drugs’ bioavailability. The primary objective of this work was to create and evaluate Itraconazole-loaded nanoparticles using the ionic gelation process to improve their solubility and bioavailability. Ionic gelation was used to prepare Itraconazole nanoparticles, which are classified as a BCS class II drug. These particles were then characterized using techniques such as Fourier transform infrared spectroscopy, differential scanning Calorimetry, powder X-ray diffraction, scanning electron microscopy, zeta potential, and in-vitro drug release studies.There was no evidence of contact between the drug and the polymers based on the differential scanning Calorimetry results, powder X-ray diffractometry, and Fourier transforms infrared spectroscopy. Images obtained by scanning electron microscopy revealed that the nanoparticles had a spherical form.Nanoparticulate formulation prepared with Chitosan in 1:6 ratio showed satisfactory results i.e. average particle size 201.67 nm, polydispersity index 0.111, zeta potential -46.2 mV, and entrapment efficiency 89.04%. FTIR study concluded that no major interaction occurred between the drug and polymers used in the present study.This technology on a laboratory scale and this strategy could be used to improve the solubility and bioavailability of BCS class II medications.


Itraconazole, ionic gelationmethod, Chitosan,BCS class II drug, Bioavailability, Dissolution and Nanoparticles.

Article Details

How to Cite
Krishnendu Sahoo, Mithun Bhowmick, Tulshi Chakraborty, Sudip Roy, & Pratibha Bhowmick. (2023). Formulation and evaluation of polymeric nanoparticles of itraconazole for antifungal therapy. International Journal of Research in Pharmacology & Pharmacotherapeutics, 12(2), 107-116.


  1. 1. Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. ArabJ Chem. 2019Nov1;12(7):908-31. doi: 10.1016/j.arabjc.2017.05.011.
  2. 2. Mahmoodi NO, Ghavidast A, Amirmahani N. A comparative study on the nanoparticles for improved drug delivery systems.J PhotochemPhotobiol B. 2016Sep1;162:681-93. doi: 10.1016/j.jphotobiol.2016.07.037, PMID 27498233.
  3. 3. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. IntJ Nanomedicine. 2008Jun;3(2):133-49. doi: 10.2147/ijn.s596, PMID 18686775.
  4. 4. KrishnaSailaja A, Siddiqua A. An overall review on polymeric nanoparticles.IntJ Res Pharm PharmSci. 2017Jan:21-8.
  5. 5. Han J, Zhao D, Li D, Wang X, Jin Z, Zhao K. Polymer-based nanomaterials and applications for vaccines and drugs. Polymers.2018Jan;10(1):31. doi: 10.3390/polym10010031, PMID 30966075.
  6. 6. Pund S, Joshi A. Nanoarchitectures for neglectedtropicalprotozoaldiseases: challenges and state of the art. InNano-and microscaledrugdeliverysystems2017Jan1 (pp. 439-80).Elsevier.
  7. 7. El-hoshoudy AN. Emulsion polymerizationmechanism. Recent Res Polym.2018Jan17;1.
  8. 8. Kawaguchi S, Ito K. Dispersion polymerization. In:Inpolymerparticles. Berlin, Heidelberg: Springer;2005Jan1. p. 299-328. doi: 10.1007/b100118.
  9. 9. Sugihara S, Blanazs A, Armes SP, Ryan AJ, Lewis AL. Aqueous dispersion polymerization: a new paradigm for in situ block copolymer self-assembly in concentrated solution. J AmChemSoc. 2011Oct5;133(39):15707-13. doi: 10.1021/ja205887v, PMID 21854065.
  10. 10. Song Y, Fan JB, Wang S. Recent progress in interfacial polymerization.MaterChemFront.2017;1(6):1028-40. doi: 10.1039/C6QM00325G.
  11. 11. RaaijmakersMJT, Benes NE. Current trends in interfacial polymerization chemistry. ProgPolymSci. 2016Dec1;63:86-142. doi: 10.1016/j.progpolymsci.2016.06.004.
  12. 12. Singh D, Harikumar SL. Nirmala. Nanoparticles: anoverview. J Drug DelivTher.2013;3:169-75.
  13. 13. Murthy SK. Nanoparticles in modern medicine: state of the art and future challenges. IntJ Nanomedicine. 2007Jun;2(2):129-41. PMID 17722542.
  14. 14. Eid AG, Uddin N, Girgis S. Formulation and optimization of biodegradable insulin loaded nanoparticles.
  15. 15. Sezer AD, editor. Application of nanotechnology in drug delivery.BoD–books on demand; 2014Jul25.
  16. 16. Kwon HY, Lee JY, Choi SW, Jang Y, Kim JH. Preparation of PLGA nanoparticles containing estrogen by emulsification–diffusion method.Colloids Surf APhysicochemEng Aspects. 2001Jun30;182(1-3):123-30. doi: 10.1016/S0927-7757(00)00825-6.
  17. 17. Gazi AS, Sailaja AK. Preparation and characterization of paracetamolloadedEudragit S100 nanoparticles by saltingouttechnique. J Dev Drugs.2018;7(183):2.
  18. 18. Tiruwa R. A review on nanoparticles–preparation and evaluation parameters.Indian J Pharm BiolRes. 2016Jun23;4(2):27-31. doi: 10.30750/ijpbr.4.2.4.
  19. 19. Mohanraj VJ, Chen Y. Nanoparticles-a review. TropJ PharmRes. 2006;5(1):561-73. doi: 10.4314/tjpr.v5i1.14634.
  20. 20. Shelake SS, Patil SV, Patil SS. Formulation and evaluation of fenofibrate-loaded nanoparticles by precipitation method. Indian J PharmSci. 2018May31;80(3):420-7. doi: 10.4172/pharmaceutical-sciences.1000374.