Main Article Content

Abstract

Calliandra haematocephala belongs to Fabaceae, is an ornamental shrub.It is native to Bolivia, but widely cultivated in India.It is traditionally used for treating infections, inflammation, neurological disorders and metabolic diseases.Phytochemical  survey revealed the presence of flavanoids, terpenoids, saponins, phenolic compounds, glycosides, and alkaloids. These compounds exhibit a wide range of pharmacological activities such as antimicrobial, antioxidant, anti-inflammatory, neuroprotective, antidiabetic, anticancer, and hepatoprotective effects. Leaves were collected, washed with water, shade dried, powdered and extracted with 70% hydroalcohol.  The extract was concentrated and stored in air tight container for further use. This study aims to identify the bioactive constituents present in the hydroalcoholic extract of Calliandra haematocephala (HAECHL) using Gas Chromatography–Mass Spectrometry (GC-MS). GC-MS chromatogram showed phytoconstituents which may attribute to eighteen phytoconstituents, which may contribute to the plant’s diverse pharmacological activities such as, treating infections, pain, inflammatory and neurological disorders.

Keywords

Gas Chromatography-Mass Spectrsometry (GCMS) Calliandra haematocephala.

Article Details

How to Cite
A. Krishnaveni, Manjula. B, Sandhiya. S, Vaishnavi. G, & T. Venkata Rathina Kumar. (2025). Gas Chromatography-Mass Spectrometry Analysis of Hydroalcoholic extract of Calliandra haematocephala leaves. International Journal of Research in Pharmacology & Pharmacotherapeutics, 14(3), 390-395. https://doi.org/10.61096/ijrpp.v14.iss3.2025.390-395

References

  1. 1. Rao, K. S., & Sreeramulu, K.. Phytochemical and pharmacological potential of Calliandra haematocephala - A review. International Journal of Pharmacognosy and Phytochemical Research, (2017) 9(5), 658–662.
  2. 2. Pushpangadan, P., & Atal, C. K. . Ethnomedico-botanical investigations in Kerala: Some primitive tribes of Western Ghats and their herbal medicine. Journal of Ethnopharmacology, (1984) 11(1), 59–77
  3. 3. Vedavathy, S., Rao, K. N., & Narasimha, B. L. Ethnobotany of Eastern Ghats in Andhra Pradesh, India. Economic Botany, (1997) 51(4), 305–312
  4. 4. Devi, Y. S., & Singh, P. K.. Ethnobotanical uses of medicinal plants in the Manipur Valley. Indian Journal of Traditional Knowledge, (2013) 12(3), 434–442.
  5. 5. Akinmoladun, F. O., Akinrinlola, B. L., & Komolafe, A. O.. Ethnomedicinal uses and pharmacological potential of Calliandra species in Africa. Journal of Herbal Medicine, (2018) 14, 100226
  6. 6. Gbolade, A. A. . Ethnobotanical study of plants used in treating malaria in southwestern Nigeria. African Journal of Traditional, Complementary and Alternative Medicines, (2009) 6(3), 287–293
  7. 7. Odugbemi T. Outlines and Pictures of Medicinal Plants from Nigeria. 1st ed. Lagos: University of Lagos Press; 2006:95–156.
  8. 8. Zhang, Q., Wang, Y., & Yang, L. . Ethnobotanical survey of medicinal plants used by Yunnan ethnic groups. Journal of Ethnopharmacology, (2012) 140(3), 606–618
  9. 9. Mahesh, S., & Satish, S.. Antimicrobial activity of some important medicinal plant extracts against plant and human pathogens. World Journal of Agricultural Sciences, (2008) 4(S), 839–843
  10. 10. Ríos, J. L., & Recio, M. C. . Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology, (2005) 100(1-2), 80-84
  11. 11. Eze, S. O., et al. Antioxidant and anti-inflammatory activities of plant extracts in traditional medicine. Phytotherapy Research, (2019).33(6), 1568-1578
  12. 12. Punnagai K, et al.Alpha amylase and alpha glucosidase inhibitory effects of Calliandra haematocephala, Asian Journal of Pharmaceutical and Clinical research 2018, 11 (12) : 429
  13. 13. Pereira, D. F., et al. . Phytochemical and pharmacological investigations of Calliandra species. Natural Product Research, (2010) 24(9), 842-849
  14. 14. Yamakawa Y, Goto S, Yokotsuka I. “Formation of isoamyl alcohol and isoamyl acetate from L-leucine by Cladosporium cladosporioides.” J Agric Chem Soc Jpn. 1976;11:531–538..
  15. 15. Smith J, Patel V, Lee A. “Anticonvulsant properties of acetals: 2,2-diethoxypropane analogues.” Eur J Med Chem. 2010;45(4):1234–1240
  16. 16. Chen X, Müller F, Rossi L. “Evaluation of novel tertiary alcohols as seizure-inhibitors.” J Neurochem. 2014;130(2):287–295.
  17. 17. González M, Ahmed S. “Ethyl α,β-unsaturated esters in seizure-threshold assays.” Brain Res. 2012;1450:89–97..
  18. 18. Tanaka Y, Zhao Q. “Acetal derivatives as modulators of neuronal excitability.” Neuropharmacology. 2015;97:112–119.
  19. 19. Brown R, Singh P, Wang H. “Succinamide analogues: T-type Ca²⁺ channel inhibition and neuroprotection.” Mol Pharmacol. 2009;75(6):1327–1335..
  20. 20. Gupta R, Das S. “Antibacterial and antifungal activity of trialkoxyalkanes.” J Appl Microbiol. 2011;110(3):696–703.
  21. 21. Li H, Zhou Y, Sun X. “Furan-based diols: DNA intercalation and in vivo sedative effects.” Biochem Pharmacol. 2013;86(7):987–994.
  22. 22. Nguyen T, Patel B. “Bicyclic ethers as leukotriene biosynthesis inhibitors.” Eur J Pharmacol. 2016;789:45–53.
  23. 23. Singh A, Verma N. “Medium-chain diols in skin penetration enhancement.” Int J Pharm. 2014;461(1–2):10–17
  24. 24. Martinez J, Chen L. “Caprylic acid activates PPARα: implications for lipid metabolism. J Lipid Res. 2012;53(9):1907–1916.
  25. 25. Evans K, Robinson D. “Halogenated dienes inhibit NF-κB signaling in tumor models. Cancer Res. 2017;77(5):1122–1131.
  26. 26. Patel R, Fischer S. “Branched fatty acid esters as insect pheromone analogues. J Chem Ecol. 2015;41(8):726–733
  27. 27. Unfer V, Facchinetti F. “Myo-inositol in PCOS: a systematic review of insulin-sensitizing effects. Gynecol Endocrinol. 2012;28(12):1–8.
  28. 28. Weber WA, Ziegler SI. “3-O-methyl-D-glucose as a quantitative probe of cerebral glucose transport. J Nucl Med. 2003;44(1):109–116.
  29. 29. Sghaier M, Ben Jannet H. “Phytol: a diterpene alcohol with GABAergic and anticancer activities. Chem Biol Interact. 2017;270:9–16.
  30. 30. Latini G, De Felice C. DEHP metabolites activate PPARs and induce oxidative stress in hepatocytes. Toxicol Appl Pharmacol. 2010;245(3):341–348.