Main Article Content

Abstract

This paper reviews asthma treatment advancements, particularly short-acting β2 agonists (SABAs) and innovative therapies. While SABAs have been essential since the 1950s, low patient adherence often leads to overuse and poor outcomes. This review examines the pharmacology of inhaled SABAs and presents as-needed inhaled corticosteroids (ICS) with formoterol as a promising alternative for swift relief. With asthma remaining a critical global health issue, recent progress in pharmacotherapy—such as digital therapies, precision medicine, and new drug classes—offers new hope for better management. The analysis highlights the urgent need to tackle unmet requirements in cost, accessibility, and adherence, especially in resource-limited settings, to ensure optimal care for all patients.

Keywords

Bronchodilators Anti cholinergic Mast cell stabilisers Methyl xanthines Leukotriene antagonist Digital technologies Biologic therapies Mechanism of action Pharmacological actions Pharmacokinetics Adverse effects Contraindications Uses

Article Details

How to Cite
Shaik Parveen, M. Rishitha, Ch. Niharika, & G. Rajini. (2025). Navigating The Pharmacological Landscape Of Asthma Management: Current And Future Trends. International Journal of Research in Pharmacology & Pharmacotherapeutics, 14(1), 126-138. Retrieved from https://ijrpp.com/ijrpp/article/view/627

References

  1. 1. Jeremy Charriot1, Isabelle Vachier1, Laurence Halimi1, Anne-Sophie Gamez1, Clement Boissin1, Marine Salama1, Alina Cucu-Jarjour1, Engi Ahmed1 and Arnaud Bourdin Future treatment for asthma ERS publications European Respiratory Review 2016 25(139): 77-92; DOI: https://doi.org/10.1183/16000617.0069-2015.
  2. 2. Domingo C, Singh D. The Changing Asthma Management Landscape and Need for Appropriate SABA Prescription. Adv Ther. 2023 Apr;40(4):1301-1316. doi: 10.1007/s12325-022-02410-z. Epub 2023 Jan 30. PMID: 36715896; PMCID: PMC10070225.
  3. 3. Hanania, Nicola A., and James F. Donohue. "Pharmacologic interventions in chronic obstructive pulmonary disease: bronchodilators." Proceedings of the American Thoracic Society 4.7 (2007): 526-534. https://www.atsjournals.org/doi/full/10.1513/pats.200701-016FM
  4. 4. Finn DF, Walsh JJ. Twenty-first-century mast cell stabilizers. Br J Pharmacol. 2013 Sep;170(1):23-37. doi: 10.1111/bph.12138. PMID: 23441583; PMCID: PMC3764846. https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.12138
  5. 5. Ghossein N, Kang M, Lakhkar AD. Anticholinergic Medications. [Updated 2023 May 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK555893/
  6. 6. Monteiro, J., Alves, M. G., Oliveira, P. F., & Silva, B. M. (2018). Pharmacological potential of methylxanthines: Retrospective analysis and future expectations. Critical Reviews in Food Science and Nutrition, 59(16), 2597–2625. https://doi.org/10.1080/10408398.2018.1461607
  7. 7. Lewis, R. A., and K. F. Austen. "The biologically active leukotrienes. Biosynthesis, metabolism, receptors, functions, and pharmacology." The Journal of Clinical Investigation 73.4 (1984): 889-897. https://dm5migu4zj3pb.cloudfront.net/manuscripts/111000/111312/JCI84111312.pdf
  8. 8. Advancing beyond approved novel step-up therapies for asthma
  9. Source: Annals of Allergy, Asthma & Immunology, 2024.
  10. Summary: Novel asthma treatments: Advancing beyond approved novel step-up therapies for asthma - PubMed
  11. 9. Brunton, L. L., Knollmann, B. C., & Hilal-Dandan, R. (2022). Goodman & Gilman’s: The Pharmacological Basis of Therapeutics (14th ed.). McGraw-Hill.
  12. 10. Rang, H. P., Dale, M. M., Ritter, J. M., & Flower, R. J. (2019). Rang & Dale’s Pharmacology (9th ed.). Elsevier.
  13. 11. Shargel, L., Wu-Pong, S., & Yu, A. B. C. (2012). Applied Biopharmaceutics & Pharmacokinetics (6th ed.). McGraw-Hill.
  14. 12. Nehlig, A. (2016). Interindividual differences in caffeine effects on cognitive performance and mood in the general population. Pharmacological Reviews, 68(3), 363-380
  15. 13. Weinstein, S. L., & Bartholomew, J. L. (1997). Theophylline: Mechanism of action and clinical applications. Journal of Clinical Pharmacology, 37(6), 515-520.
  16. 14. Müller, T., & Handford, R. (2015). Methylxanthines and cardiovascular effects: Mechanisms of action and therapeutic implications. European Heart Journal Supplements, 17(C), C53-C59.
  17. 15. Körtner, J., & Füglistaler, J. (2012). Methylxanthines in the treatment of asthma and COPD: A review of the mechanisms of action. Therapeutic Advances in Respiratory Disease, 6(1), 11-17
  18. 16. Barnes, P. J. (2010). "Leukotrienes: From Bench to Bedside." Nature Reviews Immunology, 10(4), 300-305. DOI: 10.1038/nri2733
  19. 17. Turkeltaub, P. C., & Willard, D. M. (2003). "Leukotriene receptor antagonists: pharmacology, clinical efficacy, and place in therapy." Drugs, 63(4), 363-387. DOI: 10.2165/00003495-200363040-00002
  20. 18. Zileuton: A review of its use in the treatment of asthma. (1997). Drugs, 53(6), 908-919.
  21. 19. Wenzel, S. E. (2006). "Leukotriene modifiers: An overview of their role in asthma." Clinical Reviews in Allergy & Immunology, 31(2), 59-69. DOI: 10.1385/CRIAI:31:2:59
  22. 20. Papi, A., et al. (2023). Biologic therapies in asthma: Current and future directions. The Lancet Respiratory Medicine. 11(7), 563-574. DOI: 10.1016/S2213-2600(23)00092-1
  23. 21. Kerr, M., & Beasley, R. (2021). Digital health solutions for asthma management: Trends and innovations. Journal of Asthma and Allergy. 14, 259-273. DOI: 10.2147/JAA.S298384
  24. 22. Barnes, P. J. (2021). New therapies for asthma: Moving beyond inhalers. The Journal of Allergy and Clinical Immunology. 148(4), 877-890. DOI: 10.1016/j.jaci.2021.07.003