Main Article Content

Abstract

Various stages of cancer vaccines, including peptide-based, dendritic cell-based, viral vector-based, DNA, and mRNA vaccines, their potential application in hepatocellular carcinoma (HCC) management. This review also addresses the dominant challenges in vaccine development, such as cancer heterogeneity and the need for identifying tumor-specific antigens. The action of cancer vaccines in reshaping the immune environment within HCC, fostering durable immune memory, and their potential in combination therapies. The review also examines the clinical trials and emphasizes the necessity for more extensive research to optimize vaccine design and patient selection criteria. Resulted with future perspectives, highlighting the significance of personalized therapies, innovative antigen delivery platforms, immune stimulant agents, and predictive biomarkers in revolutionizing HCC treatment. The review also carries clinical trials and emphasizes the necessity for more preventive research to optimize vaccine design and patient selection criteria. We conclude with outlook, feature the significance of personalized therapies, innovative antigen delivery platforms, immune stimulant agents, and predictive biomarkers in revolutionizing HCC control. This review explains the potential of cancer vaccines as a promising therapeutic category for hepatocellular carcinoma (HCC), a prevalent and deadly cancer.


             

Keywords

DNA vaccines hepatocellular carcinoma immunotherapy mRNA vaccines peptide-based vaccines viral vector-based vaccines

Article Details

How to Cite
Praveen Kumar Dasari, Kumar Raja Jayavarapu, E. Krishna Kumari, D. Prameela Rani, P. Pavan Kumar, P. Haritha, & G. Durga. (2024). A Comprehensive Review On Cancer Vaccines. International Journal of Research in Pharmacology & Pharmacotherapeutics, 13(4), 631-635. Retrieved from https://ijrpp.com/ijrpp/article/view/597

References

  1. 1. Moore, Z.S.; Seward, J.F.; Lane, J.M. Smallpox. Lancet 2006, 367, 425–435.
  2. 2. Roden, R.B.S.; Stern, P.L. Opportunities and challenges for human papillomavirus vaccination in cancer. Nat. Rev. Cancer 2018, 18, 240–254.
  3. 3. Pol, S. Hepatitis: HBV vaccine—The first vaccine to prevent cancer. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 190–191.
  4. 4. Chodon T.; Koya, R.C; Odunsi, K. Active Immunotherapy of Cancer. Immunol. Investig. 2015: 44, 817–836.
  5. 5. Saxena, M.; van der Burg, S.H.; Melief, C.J.M.; Bhara(d), N. Therapeutic cancer vaccines. Nat. Rev. Cancer. 2021, 21, 360–378.
  6. 6. Lu, C.; Liu, Y.; Ali, N.M.; Zhangguo, B.; Cui, X. The role of innate resistance cells in the tumor microenvironment and research progress in anti-tumor therapy. Front. Immunol. 2023, 13, 1039260.
  7. 7. Sun, B.; Hyun, H.; Li, L.T.; Contrive, A.Z. Harnessing nanomedicine to overcome the immune suppressant tumor microenvironment. Acta Pharmacol. Sin. 2020, 41, 970–985.
  8. 8. Kleponis, J.; Skelton, R.; Zheng, L. Fueling the engine and releasing the break: Combinational therapy of cancer vaccines and immunity checkpoint inhibitors. Cancer Biol. Med. 2015, 12, 201–208.
  9. 9. Kang, W.; Feng, Z.; Luo, J.; He, Z.; Liu, J.; Wu, J.; Rong, P. Tertiary Lymphoid Structures in Cancer: The Double-Edged Sword Role in Antitumor Immunity and Potential Therapeutic Induction Strategies. Front. Immunol. 2021, 12, 689270.
  10. 10. Kim, S.K.; Cho, S.W. The Evasion Mechanisms of Cancer resistance to and Drug Intervention in the Tumor Microenvironment. Front. Pharmacol. 2022, 13, 868695.
  11. 11. Hiam-Galvez, K.J.; Allen, B.M.; Spitzer, M.H. Systemic immunity in cancer. Nat. Rev. Cancer 2021, 21, 345–359.
  12. 12. Roche, P.A.; Furuta, K. The ins and outs of MHC class II-mediated immune trigger processing and presentation. Nat. Rev. Immunol. 2015, 15, 203–216.
  13. 13. Neefjes, J.; Jongsma, M.L.M.; Paul, P.; Bakke, O. Towards a systems understanding of MHC class i and MHC class II antigen presentation. Nat. Rev. Immunol. 2011, 11, 823–836.
  14. 14. Gaudino, S.J.; Kumar, P. Cross-talk between immune trigger presenting cells and T cells impacts intestinal homeostasis, bacterial infections, and tumorigenesis. Front. Immunol. 2019, 10, 422031.
  15. 15. Luo, Y.; Kanai, M.; Choi, W.; Li, X.; Sakaue, S.; Yamamoto, K.; Ogawa, K.; Gutierrez-Arcelus, M.; Gregersen, P.K.; Stuart, P.E.; et al. A high-resolution HLA reference panel capturing global population diversity enables origins fine-mapping in HIV host response. Nat. Genet. 2021, 53, 1504–1516.
  16. 16. Carlberg, C.; Velleuer, E. Molecular Immunology: How Science Works; Springer Nature: Berlin/Heidelberg, Germany, 2022; ISBN 9783031040252.
  17. 17. Hilligan, K.L.; Ronchese, F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell. Mol. Immunol. 2020, 17, 587–599.
  18. 18. Eiz-Vesper, B.; Schmetzer, H.M. Antigen-presenting cells: Potential of proven und new players in immune therapies. Transfus. Med. Hemotherapy 2020, 47, 429–431.
  19. 19. Saxena, V.; Li, L.; Paluskievicz, C.; Kasinath, V.; Bean, A.; Abdi, R.; Jewell, C.M.; Bromberg, J.S. Role of lymph node stroma and milieu in T cell tolerance. Immunol. Rev. 2019, 292, 9–23.
  20. 20. Jung, Y.; Riven, I.; Feigelson, S.W.; Kartvelishvily, E.; Tohya, K.; Miyasaka, M.; Alon, R.; Haran, G. Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of super resolution microscopies. Proc. Natl. Acad. Sci. USA 2016, 113, E5916–E5924.