Main Article Content

Abstract

Tuberculosis (TB), is caused by Mycobacterium tuberculosis complex, is one of the ancient diseases which affect more likely in humans. Tuberculosis is a major cause of morbidity and mortality worldwide. It is determined that 25% of world's population are infected with Mycobacterium tuberculosis, with a 5-10% lifetime risk of progression into Tuberculosis disease. Tuberculosis is highly widespread among the low socioeconomic section of the population and marginalized sections of the society. Methods based on the detection of Mycobacterium tuberculosis (Mtb) are inadequate sensitive, methods based on the identifying of Mtb-specific immune responses cannot always differ from active disease from latent infection, and few of the serological markers of infection with Mtb are insufficiently specific to differentiate tuberculosis from further inflammatory diseases. New tools based on technologies such as mass spectrometry, high-throughput sequencing, and artificial intelligence have the potential to solve this tight corner. The aim of this review was to provide an updated overview of optimize classical diagnostic methods, as well as new molecular and other techniques, for appropriate diagnosis of patients with tuberculosis infection. Treatment regimen for sensitive active TB and latent TB was provided.


      

Keywords

Tuberculosis acive TB latent TB Respiratory route immunocompromised mycobacterium Rifampin

Article Details

How to Cite
Bodapati.Venkataraghavedrarao, Chokka.Sharoon, Gajulapalli. Edukondalu Reddy, Karuchola.Tulasi, & Bodapati. Venkata Raghavendrarao. (2024). An Overview On Tuberculosis And Advanced Diagnostic Methodlogy. International Journal of Research in Pharmacology & Pharmacotherapeutics, 13(4), 433-446. Retrieved from https://ijrpp.com/ijrpp/article/view/575

References

  1. 1. Fischbach MA, Walsh CT. Antibiotics for emerging pathogens. Science. 2009;325(5944):1089–1093. doi: 10.1126/science.1176667. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  2. 2. Jeremiah C, Petersen E, Nantanda R, Mungai BN, Migliori GB, Amanullah F, et al. The WHO Global tuberculosis 2021 report - not so good news and turning the tide back to end TB. Int J Infect Dis. 2022;S1201-9712(22):00149–00147. doi: 10.1016/j.ijid.2022.03.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  3. 3. Zumla A, Raviglione M, Hafner R, Reyn CFV, et al. Tuberculosis. N Engl J Med. 2013;368(8):745–755. doi: 10.1056/NEJMra1200894. [PubMed] [CrossRef] [Google Scholar]
  4. 4. Blaser MJ, Kirschner D. The equilibria that allow bacterial persistence in human hosts. Nature. 2007;449(7164):843–849. doi: 10.1038/nature06198. [PubMed] [CrossRef] [Google Scholar]
  5. 5. Zumla A, Nahid P, Cole ST. Advances in the development of new tuberculosis drugs and treatment regimens. Nat Rev Drug Discov. 2013;12(5):388–404. doi: 10.1038/nrd4001. [PubMed] [CrossRef] [Google Scholar]
  6. 6. Dorman SE, Chaisson RE. From magic bullets back to the magic mountain: the rise of extensively drug-resistant tuberculosis. Nat Med. 2007;13(3):295–298. doi: 10.1038/nm0307-295. [PubMed] [CrossRef] [Google Scholar]
  7. 7. Kim DH, Kim HJ, Park SK, Kong SJ, Kim YS, Kim TH, et al. Treatment outcomes and long-term survival in patients with extensively drug-resistant tuberculosis. Am J Respir Crit Care Med. 2008;178(10):1075–1082. doi: 10.1164/rccm.200801-132OC. [PubMed] [CrossRef] [Google Scholar]
  8. 8. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393(6685):537–544. doi: 10.1038/31159. [PubMed] [CrossRef] [Google Scholar]
  9. 9. Brosch R, Gordon SV, Pym A, Eiglmeier K, Garnier T, Cole ST, et al. Comparative genomics of the mycobacteria. Int J Med Microbiol. 2000;290(2):143–152. doi: 10.1016/s1438-4221(00)80083-1. [PubMed] [CrossRef] [Google Scholar]
  10. 10. Mdluli K, Spigelman M. Novel targets for tuberculosis drug discovery. Curr Opin Pharmacol. 2006;6(5):459–467. doi: 10.1016/j.coph.2006.06.004. [PubMed] [CrossRef] [Google Scholar]
  11. 11. Goldstein BP. Resistance to rifampicin: a review. J Antibiot. 2014;67(9):625–630. doi: 10.1038/ja.2014.107. [PubMed] [CrossRef] [Google Scholar]
  12. 12. Howard NC, Marin ND, Ahmed M, Rosa BA, Martin J, Bambouskova M, et al. Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes. Nat Microbiol. 2018;3(10):1099–1108. doi: 10.1038/s41564-018-0245-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  13. 13. Shi WL, Zhang XL, Jiang X, Yuan HM, Lee JS, Barry CE, et al. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science. 2011;333(6049):1630–1632. doi: 10.1126/science.1208813. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  14. 14. Salian S, Matt T, Akbergenov R, Harish S, Meyer M, Duscha S, et al. Structure-activity relationships among the kanamycin aminoglycosides: role of ring I hydroxyl and amino groups. Antimicrob Agents Chemother. 2012;56(12):6104–6108. doi: 10.1128/aac.01326-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  15. 15. Sirgel FA, Tait M, Warren RM, Streicher EM, Bottger EC, Helden PDV, et al. Mutations in the rrs A1401G gene and phenotypic resistance to amikacin and capreomycin in Mycobacterium tuberculosis. Microb Drug Resist. 2012;18(2):193–197. doi: 10.1089/mdr.2011.0063. [PubMed] [CrossRef] [Google Scholar]
  16. 16. Takiff H, Guerrero E. Current prospects for the fluoroquinolones as first-line tuberculosis therapy. Antimicrob Agents Chemother. 2011;55(12):5421–5429. doi: 10.1128/aac.00695-11. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  17. 17. Cole ST. Learning from the genome sequence of Mycobacterium tuberculosis H37Rv. FEBS Lett. 1999 Jun 04;452(1-2):7-10. [PubMed]
  18. 18. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998 Jun 11;393(6685):537-44. [PubMed]
  19. 19. Lalvani A, Whitworth HS. Progress in interferon-gamma release assay development and applications: an unfolding story of translational research. Ann Transl Med. 2019 Jul;7(Suppl 3):S128. [PMC free article] [PubMed]
  20. 20. MacLean E, Kohli M, Weber SF, Suresh A, Schumacher SG, Denkinger CM, Pai M. Advances in Molecular Diagnosis of Tuberculosis. J Clin Microbiol. 2020 Sep 22;58(10) [PMC free article] [PubMed]
  21. 21. WHO consolidated guidelines on tuberculosis: Module 3: Diagnosis – Tests for tuberculosis infection. World Health Organization; Geneva: 2022. [PubMed]
  22. 22. D'Ambrosio L, Centis R, Tiberi S, Tadolini M, Dalcolmo M, Rendon A, Esposito S, Migliori GB. Delamanid and bedaquiline to treat multidrug-resistant and extensively drug-resistant tuberculosis in children: a systematic review. J Thorac Dis. 2017 Jul;9(7):2093-2101. [PMC free article] [PubMed]
  23. 23. Sterling TR, Njie G, Zenner D, Cohn DL, Reves R, Ahmed A, Menzies D, Horsburgh CR, Crane CM, Burgos M, LoBue P, Winston CA, Belknap R. Guidelines for the Treatment of Latent Tuberculosis Infection: Recommendations from the National Tuberculosis Controllers Association and CDC, 2020. MMWR Recomm Rep. 2020 Feb 14;69(1):1-11. [PMC free article] [PubMed]
  24. 24. Bigi MM, Forrellad MA, García JS, Blanco FC, Vázquez CL, Bigi F. An update on Mycobacterium tuberculosis lipoproteins. Future Microbiol. 2023 Dec;18:1381-1398. [PubMed]
  25. 25. Warner DF, Koch A, Mizrahi V. Diversity and disease pathogenesis in Mycobacterium tuberculosis. Trends Microbiol. 2015 Jan;23(1):14-21. [PubMed]
  26. 26. Bagcchi S. WHO's Global Tuberculosis Report 2022. Lancet Microbe. 2023 Jan;4(1):e20. [PubMed]
  27. 27. Schildknecht KR, Pratt RH, Feng PI, Price SF, Self JL. Tuberculosis - United States, 2022. MMWR Morb Mortal Wkly Rep. 2023 Mar 24;72(12):297-303. [PMC free article] [PubMed]
  28. 28. Drain PK, Bajema KL, Dowdy D, Dheda K, Naidoo K, Schumacher SG, Ma S, Meermeier E, Lewinsohn DM, Sherman DR. Incipient and Subclinical Tuberculosis: a Clinical Review of Early Stages and Progression of Infection. Clin Microbiol Rev. 2018 Oct;31(4) [PMC free article] [PubMed]
  29. 29. Lawn SD, Wood R, Wilkinson RJ. Changing concepts of "latent tuberculosis infection" in patients living with HIV infection. Clin Dev Immunol. 2011;2011 [PMC free article] [PubMed]
  30. 30. Elkington PT, Friedland JS. Permutations of time and place in tuberculosis. Lancet Infect Dis. 2015 Nov;15(11):1357-60. [PMC free article] [PubMed]
  31. 31. Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, Ginsberg A, Swaminathan S, Spigelman M,Getahun H, Menzies D, Raviglione M. Tuberculosis. Nat Rev Dis Primers. 2016 Oct 27;2:16076. [PubMed]
  32. 32. Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev. 2003 Jul;16(3):463-96. [PMC free article] [PubMed]
  33. 33. World Health Organization Global Tuberculosis Report 2021. [(accessed on 22 September 2022)]. Available online: https://www.who.int/publications/i/item/9789240037021
  34. 34. World Health Organization The End TB Strategy. [(accessed on 22 September 2022)]. Available online: https://www.who.int/publications/i/item/WHO-HTM-TB-2015.19
  35. 35. Steingart K.R., Henry M., Ng V., Hopewell P.C., Ramsay A., Cunningham J., Urbanczik R., Perkins M., Aziz M.A., Pai M. Fluorescence versus conventional sputum smear microscopy for tuberculosis: A systematic review. Lancet Infect. Dis. 2006;6:570–581. doi: 10.1016/S1473-3099(06)70578-3. [PubMed] [CrossRef] [Google Scholar]
  36. 36. Steingart K.R., Ramsay A., Pai M. Optimizing sputum smear microscopy for the diagnosis of pulmonary tuberculosis. Expert Rev. Anti Infect. Ther. 2007;5:327–331. doi: 10.1586/14787210.5.3.327. [PubMed] [CrossRef] [Google Scholar]
  37. 37. Shingadia D., Novelli V. Diagnosis and treatment of tuberculosis in children. Lancet Infect. Dis. 2003;3:624–632. doi: 10.1016/S1473-3099(03)00771-0. [PubMed] [CrossRef] [Google Scholar]
  38. 38. Elliott A.M., Namaambo K., Allen B.W., Luo N., Hayes R.J., Pobee J.O., McAdam K.P. Negative sputum smear results in HIV-positive patients with pulmonary tuberculosis in Lusaka, Zambia. Tuber. Lung Dis. 1993;74:191–194. doi: 10.1016/0962-8479(93)90010-U. [PubMed] [CrossRef] [Google Scholar]
  39. 39. Lombardi G., Di Gregori V., Girometti N., Tadolini M., Bisognin F., Dal Monte P. Diagnosis of smear-negative tuberculosis is greatly improved by Xpert MTB/RIF. PLoS ONE. 2017;12:e0176186. doi: 10.1371/journal.pone.0176186. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  40. 40. Steingart K.R., Ng V., Henry M., Hopewell P.C., Ramsay A., Cunningham J., Urbanczik R., Perkins M.D., Aziz M.A., Pai M. Sputum processing methods to improve the sensitivity of smear microscopy for tuberculosis: A systematic review. Lancet Infect. Dis. 2006;6:664–674. doi: 10.1016/S1473-3099(06)70602-8. [PubMed] [CrossRef] [Google Scholar]
  41. 41. Pai M., Nicol M.P., Boehme C.C. Tuberculosis Diagnostics: State of the Art and Future Directions. Microbiol. Spectr. 2016;4:361–378. doi: 10.1128/microbiolspec.TBTB2-0019-2016. [PubMed] [CrossRef] [Google Scholar]
  42. 42. World Health Organization Fluorescent Light-Emitting Diode (LED) Microscopy for Diagnosis of Tuberculosis: Policy Statement. [(accessed on 22 September 2022)]. Available online: https://apps.who.int/iris/bitstream/handle/10665/44602/9789241501613_eng.pdf?sequence=1&isAllowed=y [PubMed]