Main Article Content

Abstract

GC-MS chromatogram of the extract revealed a diverse range of thirty-six compounds, including terpenoids, fatty acids, heterocyclic compounds, steroids, and vitamins. The identified compounds possess various potential applications, including flavoring, antimicrobial activity, anti-inflammatory properties and anticancer effects. Notably, the extract contained caryophyllene derivatives known for their anti-inflammatory, neuroprotective, and antimicrobial properties. These findings suggest that Carissa carandas leaves could be a valuable source of natural bioactive compounds with potential medicinal applications. However, further research is needed to isolate and characterize the specific components responsible for these therapeutic effects.

Keywords

Gas Chromatography – Mass Spectroscopy Carissa carandas (Linn.)

Article Details

How to Cite
A. Krishnaveni, S. Prithivirajan, M. Bairavi, K. Umamageshwari, & T. Venkata Rathina Kumar. (2024). Gas Chromatography-Mass Spectroscopy Study of Hydro-alcoholic Extract of Carissa carandas (L.) Leaves. International Journal of Research in Pharmacology & Pharmacotherapeutics, 13(3), 357-362. Retrieved from https://ijrpp.com/ijrpp/article/view/567

References

  1. 1. Anonymous. The Wealth of India: A Dictionary of Indian Raw Materials and Industrial Products. Council of Scientific and Industrial Research, New Delhi, India, 1952.
  2. 2. Kirtikar, K. R., & Basu, B. D. Indian Medicinal Plants. Basu, Allahabad, India, 1918.
  3. 3. Nadkarni, K. M. Indian Materia Medica. Popular Prakashan, Bombay, India, 1976.
  4. 4. Singh, M. K., & Singh, V. P. Phytochemical and Pharmacological Properties of Carissa carandas Linn.: A Review. International Journal of Pharmacognosy and Phytochemical Research, 2014; 6(2): 239-249.
  5. 5. Kumar, P., & Verma, M. Carissa carandas: A Review on Its Traditional Uses and Pharmacological Activities. International Journal of Pharmaceutical Sciences and Research, 2015; 6(11): 4527-4532.
  6. 6. Gupta, A. K., & Sharma, A. Antioxidant and Anti-inflammatory Activities of Carissa carandas Fruit Extract. Journal of Natural Products and Medicinal Plants, 2013; 3(2): 182-188.
  7. 7. Rai, V. K., & Singh, R. K. Antidiabetic Activity of Carissa carandas Fruit Extract in Streptozotocin-Induced Diabetic Rats. Indian Journal of Pharmaceutical Sciences, 2012; 74(2): 118-121.
  8. 8. Onyenekwe, P.C., Odeh, C. and Enemali, M.O. Identification and quantification of headspace volatile constituents of okpehe, fermented Prosopis africana seeds. International Food Research Journal, 2014; 21(3): 1193-1197
  9. 9. Sakko, M., Moore, C., Novak‐Frazer, L., Rautemaa, V., Sorsa, T., Hietala, P., Järvinen, A., Bowyer, P., Tjäderhane, L. and Rautemaa, R. 2‐hydroxyisocaproic acid is fungicidal for Candida and Aspergillus species. Mycoses, 2014; 57: 214 – 221
  10. 10. Li, He, et al. Identification of bitter‐taste compounds in class‐III caramel colours. Flavour and Fragrance Journal. 2021; 36(3): 404-411.
  11. 11. Keyes, Emily. Synthesis and Antimicrobial Properties of Oxazaborolidine Derivatives Using the Suzuki-Miyaura Reaction. Southern Connecticut State University. 2021.
  12. 12. https://en.wikipedia.org/wiki/2,4-Dinitrotoluene accessed on 23/08/2024
  13. 13. National Center for Biotechnology Information, PubChem Compound Summary for CID 19851770, Trimethylbicyclo[4.4.0]decane. Retrieved August 22, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Trimethylbicyclo_4.4.0_decane
  14. 14. Jeon, Min Jae, et al. Discovery of novel amidobenzimidazole derivatives as orally available small molecule modulators of stimulator of interferon genes for cancer immunotherapy. European Journal of Medicinal Chemistry. 2023; 261: 115834.
  15. 15. Barreiro-Costa, Olalla, et al. Synthesis and evaluation of biological activities of bis (spiropyrazolone) cyclopropanes: A potential application against leishmaniasis. Molecules. 2021; 26.16: 4960.
  16. 16. Cheng, Y., Dong, Z., and Liu, S. β-Caryophyllene ameliorates the Alzheimer-like phenotype in APP/PS1 Mice through CB2 receptor activation and the PPARγ pathway. Pharmacology. 2014; 94, 1–12. doi: 10.1159/000362689
  17. 17. Dahham, Saad S., et al. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules. 2015; 20(7): 11808-11829.
  18. 18. Peter Proks, Frank Reimann, Nick Green, Fiona Gribble, Frances Ashcroft. Sulfonylurea Stimulation of Insulin Secretion. Diabetes; 2002; 51 (suppl_3): S368–S376. https://doi.org/10.2337/diabetes.51.2007.S368
  19. 19. Namratha, B., Nitinkumar S. Shetty, and Santosh L. Gaonkar. Synthesis and antibacterial screening of few new 5-membered heterocyclic sugar hydrazones. Asian Journal of Pharmaceutical and Clinical Research: 2016; 141-144.
  20. 20. Itoh H, Yamashita N, Kamijo S, Masuda K, Kato H, Yamaori S. Effects of acidic non-steroidal anti-inflammatory drugs on human cytochrome P450 4A11 activity: Roles of carboxylic acid and a sulfur atom in potent inhibition by sulindac sulfide. Chem Biol Interact; 2023; 382:110644. doi: 10.1016/j.cbi.2023.110644. Epub 2023 Jul 25. PMID: 37499995.
  21. 21. Oudah, Lina Abdulkadhim, and Sahba Majeed Kadhem. In vitro Antimicrobial Activity of Plant Extracts on Pseudomonas aeruginosa and Screening of Bioactive Chemical Compounds. Journal of Current Medical Research and Opinion. 2023; 6.12; 1938-1949.
  22. 22. Simian, Hervé, Fabien Robert, and Imre Blank. Identification and synthesis of 2-heptanethiol, a new flavor compound found in bell peppers. Journal of agricultural and food chemistry. 2024; 52.2 306-310.
  23. 23. Ohyama, J., Y. Ohira, and A. Satsuma. Hydrogenative ring-rearrangement of biomass derived 5-(hydroxymethyl) furfural to 3-(hydroxymethyl) cyclopentanol using combination catalyst systems of Pt/SiO 2 and lanthanoid oxides. Catalysis Science & Technology. 2017; 7(14), 2947-2953.
  24. 24. Abonia, R.; Insuasty, D.; Laali, K.K. Recent Advances in the Synthesis of Propargyl Derivatives, and Their Application as Synthetic Intermediates and Building Blocks. Molecules. 2023; 28, 3379. https://doi.org/10.3390/molecules28083379
  25. 25. Morton IK, Hall JM (6 December 2012). Concise Dictionary of Pharmacological Agents: Properties and Synonyms. Springer Science & Business Media. pp. 140–. ISBN 978-94-011-4439-1.
  26. 26. Naito, Ryo, et al. Selective muscarinic antagonists. II. Synthesis and antimuscarinic properties of biphenylylcarbamate derivatives. Chemical and pharmaceutical bulletin. 1998; 46.8, 1286-1294.
  27. 27. Brown, Chad W., et al. Novel Heteroarotinoids as Potential Antagonists of Mycobacterium b ovis BCG. Journal of medicinal chemistry. 2004; 47(4):1008-1017.
  28. 28. Fricker, Rosemary A., et al. The influence of nicotinamide on health and disease in the central nervous system. International Journal of Tryptophan Research. 2018.
  29. 29. Younis, Abeer, and Hend Saleh. Phytochemical screening and assessment of antioxidant and antimicrobial potentialities of two Egyptian medicinal plants. Egyptian Journal of Pure and Applied Science. 2021; 59(1): 49-57.
  30. 30. Sam, Wei Yin. Phytochemical Study and Antioxidant Activity of Tradescantia Spathacea SW. Leaves. Diss. Tunku Abdul Rahman University College. 2022.
  31. 31. Delgado de la Torre, M. Pilar, Feliciano Priego‐Capote, and M. Dolores Luque de Castro. Comparative profiling analysis of woody flavouring from vine‐shoots and oak chips. Journal of the Science of Food and Agriculture. 2014; 94(3): 504-514.
  32. 32. Zoidis, Grigoris, et al. Anti-allodynic effect of 2-(aminomethyl) adamantane-1-carboxylic acid in a rat model of neuropathic pain: a mechanism dependent on CaV2. 2 channel inhibition. Bioorganic & medicinal chemistry. 2014; 22(6): 1797-1803.