Main Article Content

Abstract

Pandanus amaryllifolius, an aromatic tropical plant belongs to the pandanaceae family, has gained much interest among researchers in the quest to develop further use of its essential oils beyond food flavoring, traditional medicines and limited food industries. The present investigation reports on the chemical composition of essential oil and hydroalcoholic extract. Phytochemical studies revealed of Pandanus amaryllifolius showed the presence of flavonoids and phenolic compounds. It exhibited antiviral, antioxidant, antihyperglycemic, anticancer, antimicrobial activities. The essential oil and hydroalcoholic extract reported six and thirty bioactive molecules respectively.

Keywords

GC-MS bioactive molecules Pandanus amaryllifolius

Article Details

How to Cite
A. Krishnaveni, D. Dodi, V. Manju Shree, & T. Venkata Rathina Kumar. (2024). Gas Chromatography-Mass Spectroscopy Study of Essential Oil And Hydroalcoholic Extract Of Pandanus Amaryllifolius Roxb Leaves. International Journal of Research in Pharmacology & Pharmacotherapeutics, 13(2), 117-125. Retrieved from https://ijrpp.com/ijrpp/article/view/541

References

  1. 1. Biman Bhuyan and Richa Sonowal. An Overview Of Pandanus amaryllifolius Roxb.exLindl. And Its Potential Impact On Health. Current Trends in Pharmaceutical Research, 2021 Vol 8 Issue 1 ©Dibrugarh University www.dibru.ac.in./ctpr. ISSN:23194820
  2. 2. Wakte, Kantilal & Nadaf, Altafhusain & Thengane, Ratnakar & Jawali, Narendra. (2009). Pandanus amaryllifolius Roxb. cultivated as a spice in coastal regions of India. Genetic Resources and Crop Evolution. 56. 735-740. 10.1007/s10722-009-9431-5.
  3. 3. Jiang J (1999) Volatile composition of pandan leaves (Pandanus amaryllifolius). In: Shadidi F, Ho CT (eds) Flavour chemistry of ethnic foods. Kluwer, New York, pp 105–109.
  4. 4. Jong TT, Chau SW. Antioxidative activities of constituents isolated from Pandanus odorattissimus. Phytochemistry, 1998. Vol. 49, No. 7, Page no: 2145-2148.
  5. 5. Sankaranarayanan S, Bama P, Ramachandran J, Kalaichelvan PT, Deccaraman M, Vijayalakshimi M, Dhamotharan R, Dananjeyan B, Bama SS. Ethnobotanical study of medicinal plants used by traditional users in Villupuram district of Tamil Nadu, India. Journal of Medicinal Plant Research, 2009. Volume: 4(12). Page no:1089– 1101
  6. 6. Quyen NT, Quyen NT, Nhan LT, Toan TQ. Antioxidant activity, total phenolics and flavonoids contents of Pandanus amaryllifolius (Roxb.). InIOP Conference Series: Materials Science and Engineering 2020 Dec 1 (Vol. 991, No. 1, p. 012019). IOP Publishing.
  7. 7. Ruwali P, Rai N, Kumar N, Gautam P. Antiviral potential of medicinal plants. International Research Journal of Pharmacy, 2013.Vol: 4(6) DOI:10.7897/2230-8407.04603
  8. 8. Nor FM, Mohamed S, Idris NA, Ismail R. Antioxidative properties of Pandanus amaryllifolius leaf extracts in accelerated oxidation and deep frying studies. Food Chem. 2008.Vol: 110, Page no: 319–327
  9. 9. Sasidharana S, Sumathibc V, Jegathambigaib RN, Lathaa LY. Antihyperglycaemic effects of ethanol extracts of Carica papaya and Pandanus amaryfollius leaf in streptozotocin induced diabetic mice. Natural Product Research: Formerly Natural Product Letters, 2011. Vol. 25, No. 20. Page no: 1982–1987.
  10. 10. Chong HZ, Yeap SK, Rahmat A, Akim AM, Alitheen NB, Othman F, Gwendoline-Ee, CL. In vitro evaluation of Pandanus amaryllifolius ethanol extract for induction of cell death on non-hormone dependent human breast adenocarcinoma MDA-MB-231 cell via apoptosis. BMC Complementary and Alternative Medicine, 2012. Vol.12(1). doi:10.1186/1472-6882-12-134
  11. 11. Laluces HMC, Nakayama A, Nonato MG, Cruz T E dela , Tan MA. Antimicrobial alkaloids from the leaves of Pandanus amaryllifolius. Journal of Applied Pharmaceutical Science, 2015.Vol. 5(10) Page no:151-153, DOI: 10.7324/JAPS.2015.501026. Available online at http://www.japsonline.com
  12. 12. Indian Pharmacopoeia, Government of india, Ministry of health and family welfare, Pharmacopoeial commission, Ghaziabad. 2022 pp.4102.
  13. 13. Zakaria MM, Zaidan UH, Shamsi S, Gani SS. Chemical composition of essential oils from leaf extract of pandan, Pandanus amaryllifolius ROXB. Malaysian Journal of Analytical Sciences. 2020;24(1):87-96.
  14. 14. Rukhsana K, Varghese V, Akhilesh VP, Jisha Krishnan EK, Priya Bhaskaran KP, Bindu PU, Sebastian CD. GC-MS determination of chemical components in the bioactive secretion of Anoplodesmus saussurii (Humbert, 1865). Int. J. Pharm. Sci. Res. 2015;6:650-3.
  15. 15. Ramya R. GC-MS analysis of bioactive compounds in ethanolic leaf extract of Hellenia speciosa (J. Koenig) SR Dutta. Applied Biochemistry and Biotechnology. 2022;194(1):176-86.
  16. 16. Madaan A, Verma R, Kumar V, Singh AT, Jain SK, Jaggi M. 1, 8‐Naphthyridine derivatives: A review of multiple biological activities. Archiv der Pharmazie. 2015 Dec;348(12):837-60.
  17. 17. https://pubchem.ncbi.nlm.nih.gov/compound/Octasiloxane
  18. 18. https://www.britannica.com/science/gibberellin
  19. 19. Cheng J, Li B, Ma P, Liu M, Wang Z. Synthesis and properties of macrocyclic butanoic acid conjugates as a promising delivery formulation for the nutrition of colon. The Scientific World Journal. 2013 Jan 1;2013.
  20. 20. https://en.m.wikipedia.org/wiki/Methoxyamine
  21. 21. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146692/
  22. 22. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146692/
  23. 23. https://cymitquimica.com/products/TR-M294720/1757-42-2/3-methylcyclopentanone/
  24. 24. https://foodb.ca/compounds/FDB011832
  25. 25. Hur J, Jang J, Sim J. A review of the pharmacological activities and recent synthetic advances of γ-butyrolactones. International Journal of Molecular Sciences. 2021 Mar 9;22(5):2769.
  26. 26. https://pubchem.ncbi.nlm.nih.gov/compound/1_1Dimethylguanidine#section=Use-and-Manufacturing
  27. 27. Ram VJ, Goel A, Pratap R. Isolated Pyranones: Multifaceted Building Blocks for Molecular Diversity. Elsevier; 2022 Apr 27.
  28. 28. Schweigert N, Zehnder AJ, Eggen RI. Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals: minireview. Environmental microbiology. 2001 Feb;3(2):81-91.
  29. 29. https://www.medchemexpress.com/coumaran.html#:~:text=Coumaran%20(2%2C3%2DDihydrobenzofuran)%20is%20an%20AChE%20inhibitor,be%20used%20as%20a%20biopesticide.
  30. 30. https://en.m.wikipedia.org/wiki/Triethylene_glycol#:~:text=It%20is%20used%20as%20a,and%20in%20air%20conditioning%20systems.
  31. 31. https://en.m.wikipedia.org/wiki/2-Methoxy-4-vinylphenol#:~:text=2%2DMethoxy%2D4%2Dvinylphenol%20is%20an%20aromatic%20substance%20used,the%20natural%20aroma%20of%20buckwheat.&text=Except%20where%20otherwise%20noted%2C%20data,F%5D%2C%20100%20kPa).
  32. 32. https://actylis.com/product/grpp102932-dimethyl-lauryl-amine#:~:text=It%20is%20commonly%20used%20in,agent%2C%20and%20a%20textile%20softener.
  33. 33. J. Chem. Educ. 2022, 99, 2, 983–993, Publication Date:December 20, 2021
  34. 34. Thiele, K., Jahn, U., Geissmann, F., & Zirngibl, L. (1984). Neue biologisch aktive Theophyllin-Derivate. Synthese und pharmakologische Eigenschaften von Flufyllin und Fluprofyllin [New biologically active theophylline derivatives. Synthesis and pharmacologic properties of flufylline and fluprofylline]. Arzneimittel-Forschung, 34(1), 1–4.
  35. 35. https://www.ebi.ac.uk/chebi/searchId.do?chebiId=43619#:~:text=Icosane's%20phase%20transition%20at%20a,persons%20suffering%20from%20Parkinson's%20disease.
  36. 36. Rouis-Soussi, L. S., Ayeb-Zakhama, A. E., Mahjoub, A., Flamini, G., Jannet, H. B., & Harzallah-Skhiri, F. (2014). Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L. EXCLI journal, 13, 526–535.
  37. 37. GS, K. (2024). Squalene and its potential clinical uses. Alternative Medicine Review : A Journal of Clinical Therapeutic, 4(1). Retrieved from https://pubmed.ncbi.nlm.nih.gov/9988781/#:~:text=In%20animals%2C%20supplementation%20of%20the,in%20a%20variety%20of%20cancers.
  38. 38. PubChem. (2024). 1-Bromoeicosane. Retrieved April 3, 2024, from @pubchem website: https://pubchem.ncbi.nlm.nih.gov/compound/1-Bromoeicosane
  39. 39. J. Gyimesi, & A. Melera. (1967). On the structure of crotocin an antifungal antibiotic. Tetrahedron Letters, 8(17), 1665–1673. https://doi.org/10.1016/s0040-4039(00)70336-4
  40. 40. Cilla, A., V. Zanirato, M.T. Rodriguez-Estrada, & G. Garcia-Llatas. (2014). Nutriential Hazards: Micronutrients: Vitamins and Minerals. Elsevier EBooks, 86–94. https://doi.org/10.1016/b978-0-12-378612-8.00431-5
  41. 41. Vitamin E. (2012, September 18). Retrieved April 3, 2024, from The Nutrition Source website: https://www.hsph.harvard.edu/nutritionsource/vitamin-e/
  42. 42. Ashraf, R., & Haq Nawaz Bhatti. (2021). Stigmasterol. Elsevier EBooks, 213–232. https://doi.org/10.1016/b978-0-12-822923-1.00019-4
  43. 43. Methyl Trimethicone (Emulsifier): Cosmetic Ingredient INCI. (2024). Retrieved April 3, 2024, from Specialchem.com website: https://cosmetics.specialchem.com/inci-ingredients/methyl-trimethicone#:~:text=Methyl%20Trimethicone%20is%20primarily%20utilized,spreadability%20and%20enhance%20product%20application
  44. 44. Salehi, B., Upadhyay, S., Ilkay Erdogan Orhan, Arun Kumar Jugran, Sumali L.D. Jayaweera, Dias, D. A., … Javad Sharifi-Rad. (2019). Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules, 9(11), 738–738. https://doi.org/10.3390/biom9110738
  45. 45. C. (2004, March 21). chemical compound. Retrieved April 3, 2024, from Wikipedia.org website: https://en.m.wikipedia.org/wiki/Palmitic_acid
  46. 46. C. (2014, June 16). chemical compound. Retrieved April 3, 2024, from Wikipedia.org website: https://en.m.wikipedia.org/wiki/Ethyl_palmitate#:~:text=Ethyl%20palmitate%20is%20used%20as,%2D%20and%20skin%2Dconditioning%20agent
  47. 47. Josué de Moraes, de, N., Costa, J. P., Antonio, de, P., Freitas, R. M., … Pedro. (2014). Phytol, a Diterpene Alcohol from Chlorophyll, as a Drug against Neglected Tropical Disease Schistosomiasis Mansoni. PLOS Neglected Tropical Diseases, 8(1), e2617–e2617. https://doi.org/10.1371/journal.pntd.0002617
  48. 48. PubChem. (2024). 5-Methyl-2-phenyl-1H-indole-3-thiol. Retrieved April 3, 2024, from @pubchem website: https://pubchem.ncbi.nlm.nih.gov/compound/5-Methyl-2-phenyl-1H-indole-3-thiol