Main Article Content

Abstract

The aim of this study was to investigate the antioxidant activity and phytochemical analysis of the leaves extracts of Rubia Cordifolia. The phytochemical screening was carried on the both extracts of leaves of Rubia Cordifolia, revealed the presence of some active ingredients such as Alkaloids, Carbohydrates, Phytosterols, saponins, phenolic , fixed oil and fats, proteins , free aminoacids and lignins. The aqueous and alcoholic leaves extract were also evaluated for their antioxidant activity using FRAP assay, Metal chelating assay, DPPH radical scavenging assay, superoxide-radical scavenging assay and Hydrogen peroxide scavenging assay . The result of the present study showed that the Ethanolic leaves extract of Rubia Cordifolia has shown the greatest anti-oxidant activity than aqueous extracts. The high scavenging property of may be due to hydroxyl groups existing in the phenolic compounds. Further work is needful to isolate the exact compound which is responsible for antioxidant activity and biophysical characterization can be done in the future.


Our findings suggest the use of Rubia Cordifolia leaves in functional foods and food supplements designed for prevention of various chronic diseases including cancer. However, further studies are needed to prove that the protective effects observed in vitro do indeed translate in vivo.

Keywords

antioxidant rubia cordifolia

Article Details

How to Cite
Tahura naaz, Padmini Iriventi, & Koteswari Poluri. (2023). Determination of antioxidant activity of rubia cordifolia. International Journal of Research in Pharmacology & Pharmacotherapeutics, 12(3), 232-240. Retrieved from https://ijrpp.com/ijrpp/article/view/500

References

  1. 1. Pisoschi AM, Negulescu GP. Methods for total antioxidant activity determination: a review. Biochem & Anal Biochem. 2012;01(1). doi: 10.4172/2161-1009.1000106.
  2. 2. Litescu SC, Sandra AV, Eremia SAV, Diaconu M, Tache A, et al. Biosensors applications on assessment of reactive oxygen species and antioxidants. Environmental biosensors. Tech Rijeka Croatia. 2011.
  3. 3. Molyneux P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol. 2004;26:211-9.
  4. 4. McCord JM. The evolution of free radicals and oxidative stress. Am J Med. 2000;108(8):652-9. doi: 10.1016/s0002-9343(00)00412-5, PMID 10856414.
  5. 5. Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J. 2013;21(2):143-52. doi: 10.1016/j.jsps.2012.05.002, PMID 24936134.
  6. 6. Lotito SB, Frei B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic Biol Med. 2006;41(12):1727-46. doi: 10.1016/j.freeradbiomed.2006.04.033, PMID 17157175.
  7. 7. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118-26. doi: 10.4103/0973-7847.70902, PMID 22228951.
  8. 8. Brewer MS. Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf. 2011;10(4):221-47. doi: 10.1111/j.1541-4337.2011.00156.x.
  9. 9. Romani A, Minunni M, Mulinacci N, Pinelli P, Vincieri FF, Del Carlo M, et al. Comparison among differential pulse voltammetry, amperometric biosensor, and HPLC/DAD analysis for polyphenol determination. J Agric Food Chem. 2000;48(4):1197-203. doi: 10.1021/jf990767e, PMID 10775372.
  10. 10. Halvorsen BL, Carlsen MH, Phillips KM, Bøhn SK, Holte K, Jacobs DR, et al. Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States. Am J Clin Nutr. 2006;84(1):95-135. doi: 10.1093/ajcn/84.1.95, PMID 16825686.
  11. 11. Gillman MW, Cupples LA, Gagnon D, Posner BM, Ellison RC, Castelli WP, et al. Protective effect of fruits and vegetables on development of stroke in men. J Am Med Assoc. 1995;273(14):1113-7. doi: 10.1001/jama.1995.03520380049034, PMID 7707599.
  12. 12. Rodríguez-Bernaldo de Quirós A, Costa HS. Analysis of carotenoids in vegetable and plasma samples: a review. J Food Compos Anal. 2006;19(2-3):97-111. doi: 10.1016/j.jfca.2005.04.004.
  13. 13. Ramadan-Hassanien MF. Total antioxidant potential of juices, beverages and hot drinks consumed in Egypt screened by DPPH in vitro assay. Grasas Aceites. 2008;59(3):254-9. doi: 10.3989/gya.2008.v59.i3.516.
  14. 14. Ramadan MF, Moersel JT. Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. J Sci Food Agric. 2007;87(3):452-60. doi: 10.1002/jsfa.2728.
  15. 15. Serafini M, Bellocco R, Wolk A, Ekström AM. Total antioxidant potential of fruit and vegetables and risk of gastric cancer. Gastroenterology. 2002;123(4):985-91. doi: 10.1053/gast.2002.35957, PMID 12360458.
  16. 16. Pellegrini N, Simonetti P, Gardana C, Brenna O, Brighenti F, Pietta P. Polyphenol content and total antioxidant activity of vini novelli (young red wines). J Agric Food Chem. 2000;48(3):732-5. doi: 10.1021/jf990251v, PMID 10725141.
  17. 17. Pellegrini N, Serafini M, Salvatore S, Del Rio D, Bianchi M, Brighenti F. Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Mol Nutr Food Res. 2006;50(11):1030-8. doi: 10.1002/mnfr.200600067, PMID 17039458.
  18. 18. Hu FB. Plant-based foods and prevention of cardiovascular disease: an overview. Am J Clin Nutr. 2003;78(3);Suppl:544S-51S. doi: 10.1093/ajcn/78.3.544S, PMID 12936948.
  19. 19. Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S, Bianchi M, et al. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J Nutr. 2003;133(9):2812-9. doi: 10.1093/jn/133.9.2812, PMID 12949370.
  20. 20. Gazdik Z, Krska B, Adam V, Saloun J, Pokorna T, Reznicek V, et al. Electrochemical determination of the antioxidant potential of some less common fruit species. Sensors (Basel). 2008;8(12):7564-70. doi: 10.3390/s8127564, PMID 27873945.
  21. 21. Frei B, England L, Ames BN. Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci U S A. 1989;86(16):6377-81. doi: 10.1073/pnas.86.16.6377, PMID 2762330.
  22. 22. Raoof JB, Ojani R, Beitollahi H. Electrocatalytic determination of ascorbic acid at chemically modified carbon paste electrode with 2, 7-bis (ferrocenyl ethynyl) fluoren-9-one. Int J Electrochem Sci. 2007;2(7):534-48. doi: 10.1016/S1452-3981(23)17094-5.
  23. 23. Tomita IN, Manzoli A, Fertonani FL, Yamanaka H. Amperometric biosensor for ascorbic acid. Eclet Quím. 2005;30(2):37-43. doi: 10.26850/1678-4618eqj.v30.2.2005.p37-43.
  24. 24. Pisoschi AM, Negulescu Gh P, Pisoschi A. Ascorbic acid determination by an amperometric ascorbate oxidase-based biosensor. Rev Chim (Bucharest) 61. 2010:339-44.
  25. 25. Pisoschi AM, Pop A, Negulescu GP, Pisoschi A. Determination of ascorbic acid content of some fruit juices and wine by voltammetry performed at Pt and carbon paste electrodes. Molecules. 2011;16(2):1349-65. doi: 10.3390/molecules16021349, PMID 21285920.
  26. 26. Campanella L, Martini E, Rita E, Tomassetti M. Antioxidant capacity of dry vegetal extracts checked by voltammetric method. J Food Agric Environ. 2006;4:135-44.
  27. 27. Yang M, Schaich KM. Factors affecting DNA damage caused by lipid hydroperoxides and aldehydes. Free Radic Biol Med. 1996;20(2):225-36. doi: 10.1016/0891-5849(95)02039-X.
  28. 28. Kanner J, German JB, Kinsella JE. Initiation of lipid peroxidation in biological systems. Crit Rev Food Sci Nutr. 1987;25(4):317-64. doi: 10.1080/10408398709527457, PMID 3304843.