Main Article Content

Abstract

The immunosuppressive activity of the Methanol extract of bark of Moringa Oleiferaconsisting of a mixture of saponins, flavonoids, tannins, steroids, phenol and glycosides wasstudied on the immune responses in mice.Methanol extract of Moringa Oleifera(MO) wasadministered orally at doses of 50, 100 and 150 mg/kg/day to healthy mice divided into fourgroups consisting of six animals each.The assessment of immunomodulatory activity was carriedout by testing the humoral (antibody titre) and cellular (foot pad swelling) immune responses tothe antigenic challenge by sheep RBCs.Furthermore, the effect on hematological parameters aswell as relative organ weight was determined. On oral administration MMO showed a significantdecrease delayed type hypersensitivity (DTH) response whereas the humoral response to sheepRBCs was unaffected. Thus MMO significantly suppressed the cellular immunity by decreasingthe footpad thickness response to sheep RBCs in sensitized mice.With a dose of 100 and 150 mg/kg/day the DTH response was 8.31 ± 1.53 and 6.19 ± 2.34respectively in comparison to correspondingvalue of 15.43 ± 1.69for untreated control group.These differences in DTH response werestatistically significant (P < 0.05). The study demonstrates that MMO shows preferential suppression of thecomponents of cell-mediated immunity and shows no effect on the humoral immunity.

Keywords

Immunosuppressive, Moringa Oleifera,Delayed type hypersensitivity, Haemagglutinating antibody titre and Methanolic extract.

Article Details

How to Cite
V. Vahini, G. Archita, B. Kavyasri, B. Rachana, D. Kalpana, T. Nandini, & P. Chandrika. (2023). Invitro Evaluation of Immunosuppressant Activity of Moringa Oleifera. International Journal of Research in Pharmacology & Pharmacotherapeutics, 12(1), 32-37. https://doi.org/10.61096/ijrpp.v12.iss1.2023.32-37

References

  1. 1. Abbas AK, Lichtman AH. Basic immunology: functions and disorders of the immune system. Philadelphia: W B Saunders Company; 2001.
  2. 2. Web link. Available from: http://www.nih.gov/niams/healthinfo/lupusguide/chppis15.htm.
  3. 3. Reiff A. A review of Campath in autoimmune disease: biologic therapy in the gray zone between mmunosuppression and immunoablation. Hematology. 2005;10(2):79-93. doi: 10.1080/10245330400026139, PMID 16019453.
  4. 4. Sompayrac LM. How the immune system works. Boston: Blackwell Publishing Science; 1999.
  5. 5. Guidelines for vaccination of solid organ transplant candidates and recipients. Am J Transplant. 2004;4;Suppl 10:160-3.
  6. 6. Barriga OO. Immunomodulation by nematodes: a review. Vet Parasitol. 1984;14(3-4):299-320. doi: 10.1016/0304-4017(84)90098-0, PMID 6382784.
  7. 7. de Macedo MS, Mota I. Antigenic competition in IgE antibody production: I. Establishment of parameters involved in primary and secondaryresponses. Immunology. 1980;40(4):701-8. PMID 7429547.
  8. 8. Urban JF Jr, Madden KB, Svetić A, Cheever A, Trotta PP, Gause WC et al. The importance of Th2cytokines in protective immunity to nematodes. Immunol Rev. 1992;127:205-20. doi: 10.1111/j.1600-065x.1992.tb01415.x, PMID 1354652.
  9. 9. Sahoo BM, Banik BK. Medicinal plants: source for immunosuppressive agents. Sahoo Banik Immunol Curr Res. 2018;2:1.
  10. 10. Available from: https://my.clevelandclinic.org/health/drugs/10418-immunosuppressants.
  11. 11. Kamatani T, Otsuka R, Murata T, Wada H, Takahashi T, Mori A et al. Evaluation of immunosuppression protocols for MHC-matched allogeneic iPS cell-based transplantation using a mouse skin transplantation model. Inflam Regen. 2022;42(1):4. doi: 10.1186/s41232-021-00190-7, PMID 35105370.
  12. 12. Rehberger K, Escher BI, Scheidegger A, IngeWerner, Segner H. Evaluation of an in vitro assayto screen for the immunotoxicpotential of chemicals to fsh. 2021;11:3167.
  13. 13. Zimmermann-Klemd AM, Reinhardt JK, Morath A, Schamel WW, Steinberger P, Leitner J et al. Immunosuppressive Activity of Artemisia argyi Extract and Isolated compounds. Front Pharmacol. April 08 2020;11:402. doi: 10.3389/fphar.2020.00402, PMID 32322200.
  14. 14. Lu J, Guan S, Shen X, Qian W, Huang G, Deng X et al. Immunosuppressive activity of 8-gingerol on immune responses in mice. Molecules. 2011;16(3):2636-45. doi: 10.3390/molecules16032636, PMID 21441866.
  15. 15. Veletzky L, Rehman K, Lingscheid T, Poeppl W, Loetsch F, Burgmann H et al. In vitro activity of immunosuppressive drugsagainst Plasmodium falciparum. Veletzky et al. Malar J. 2014;13:476. doi: 10.1186/1475-2875-13-476, PMID 25476467.
  16. 16. Hamdy S, Haddadi A, Shayeganpour A, Alshamsan A, Montazeri Aliabadi H, Lavasanifar A. The immunosuppressive activity of polymeric micellar formulation of cyclosporine A: in vitro and in vivo studies. AAPS J. 2011;13(2, June):159-68. doi: 10.1208/s12248-011-9259-8, PMID 21336534.
  17. 17. Olson RD, Headley MB, Hodzic A, Walsh GM, Wingett DG. In vitro and in vivo Immunosuppressive Activity of a Novel anthracycline, 13-deoxy, 5-iminodoxorubicin. Int Immunopharmacol. 2007 June;7(6):734-43. doi: 10.1016/j.intimp.2007.01.010, PMID 17466907.
  18. 18. Song Bocui, Wang Z, Liu Y, Xu Sisi, Huang Guoren, Xiong Y et al. Immunosuppressive activity of daphnetin, one of coumarin derivatives, is mediated through suppression of NF-kB and NFAT signaling pathways in mouse T cells. PLoS One. May 2014;9(5) | Issue 5 | e96502:e96502. doi: 10.1371/journal.pone.0096502, PMID 24800925.
  19. 19. Bian L, Guo Z-K, Wang HX, Wang J-S, Wang H, Li QF et al. In vitro and in vivo ImmunosuppressiveCharacteristics of hepatocyte growth factor-modified murine mesenchymal stem cells. In Vivo. 2009;23(1):21-7. PMID 19368120.