Main Article Content

Abstract

Despite the progress made in immunization and drug development, so far there are no prophylactic vaccines and effective therapies for many viral infections, including infections caused by corona viruses. In this regard, the search for new antiviral substances continues to be relevant, and the enormous potential of marine resources is a stimulus for the study of marine compounds with antiviral activity in experiments and clinical trials. The highly pathogenic human corona viruses-severe acute respiratory syndrome-related corona virus (SARS-CoV), Middle East respiratory syndrome corona virus (MERS-CoV), severe acute respiratory syndrome-related corona virus 2 (SARS-CoV-2) remain a serious threat to human health. In this study, the authors hope to bring the attention of researchers to the use of biologically active substances of marine origin as potential broad-spectrum antiviral agents targeting common cellular pathways and various stages of the life cycle of different viruses, including corona viruses. The research has been compiled using references from major databases such as Web of Science, PubMed, Scopus, Elsevier, Springer and Google Scholar (up to April 2021) and keywords such as ‘corona viruses’, ‘marine organisms’, ‘biologically active substances’, ‘antiviral drugs’, ‘SARS-CoV’, ‘MERS-CoV’, ‘SARS-CoV-2’, ‘3CLpro’, ‘TMPRSS2’, ‘ACE2’. After obtaining all reports from the databases, the papers were carefully analyzed in order to find data related to the topic of this research  (98 references). Biologically active substances of marine origin, such as flavonoids, phlorotannins, alkaloids, terpenoids, peptides, lectins, polysaccharides, lipids and others substances, can affect corona viruses at the stages of penetration and entry of the viral particle into the cell, replication of the viral nucleic acid and release of the virion from the cell; they also can act on the host's cellular targets. These natural compounds could be a vital resource in the fight against corona viruses.

Keywords

corona viruses marine organisms biologically active substances antiviral drugs SARS-CoV MERS-CoV SARS-CoV-2

Article Details

How to Cite
Darla R. (2021). Marine organisms in the strategies for combating corona viruses. International Journal of Research in Pharmacology & Pharmacotherapeutics, 10(2), 165-180. https://doi.org/10.61096/ijrpp.v10.iss2.2021.165-180

References

  1. 1. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related corona virus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536-44. doi: 10.1038/s41564-020-0695-z.
  2. 2. World Health Organization. Director. General’s opening remarks at the media briefing on COVID-19–11. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—11-march-2020. March.
  3. 3. Islam MT, Sarkar C, El-Kersh DM, Jamaddar S, Uddin SJ, Shilpi JA, Mubarak MS. Natural products and their derivatives against corona virus: a review of the non‐clinical and pre‐clinical data. Phytother Res. 2020;34(10):2471-92. doi: 10.1002/ptr.6700, PMID 32248575.
  4. 4. Adalja A, Inglesby T. Broad-spectrum antiviral agents: a crucial pandemic tool. Expert Rev Anti-Infect Ther. 2019;17(7):467-70. doi: 10.1080/14787210.2019.1635009, PMID 31216912.
  5. 5. Khan MT, Ali A, Wang Q, Irfan M, Khan A, Zeb MT, Zhang YJ, Chinnasamy S, Wei DQ Marine natural compounds as potents inhibitors against the main protease of SARS-CoV-2-a molecular dynamic study. J Biomol Struct Dyn. 2021;39(10):3627-37. doi: 10.1080/07391102.2020.1769733. PMID 32410504.
  6. 6. Antonio AdS, Wiedemann LSM, Veiga-Junior VF. Natural products’ role against COVID-19. RSC Adv. 2020;10(39):23379-93. doi: 10.1039/D0RA03774E.
  7. 7. Malve H. Exploring the ocean for new drug developments: marine pharmacology. J Pharm Bioallied Sci. 2016;8(2):83-91. doi: 10.4103/0975-7406.171700, PMID 27134458.
  8. 8. Cheung RC, Wong JH, Pan W, Chan YS, Yin C, Dan X, Ng TB. Marine lectins and their medicinal applications. Appl Microbiol Biotechnol. 2015;99(9):3755-73. doi: 10.1007/s00253-015-6518-0, PMID 25794876.
  9. 9. Donia M, Hamann MT. Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis. 2003;3(6):338-48. doi: 10.1016/s1473-3099(03)00655-8, PMID 12781505.
  10. 10. Stonik VA. Studies on natural compounds as a road to new drugs. Her Russ Acad Sci. 2016;86(3):217-25. doi: 10.1134/S1019331616030187.
  11. 11. Yasuhara-Bell J, Lu Y. Marine compounds and their antiviral activities. Antiviral Res. 2010;86(3):231-40. doi: 10.1016/j.antiviral.2010.03.009, PMID 20338196.
  12. 12. Gentile D, Patamia V, Scala A, Sciortino MT, Piperno A, Rescifina A. Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: a virtual screening and molecular modeling study. Mar Drugs. 2020;18(4):225-64. doi: 10.3390/md18040225, PMID 32340389.
  13. 13. Ziółkowska NE, O’Keefe BR, Mori T, Zhu C, Giomarelli B, Vojdani F, Palmer KE, McMahon JB, Wlodawer A. Domain-swapped structure of the potent antiviral protein griffithsin and its mode of carbohydrate binding. Structure. 2006;14(7):1127-35. doi: 10.1016/j.str.2006.05.017, PMID 16843894.
  14. 14. Pyrc K, Bosch BJ, Berkhout B, Jebbink MF, Dijkman R, Rottier P, van der Hoek L. Inhibition of human corona virus NL63 infection at early stages of the replication cycle. Antimicrob Agents Chemother. 2006;50(6):2000-8. doi: 10.1128/AAC.01598-05, PMID 16723558.
  15. 15. Payne S. Family. Coronaviridae Viruses. 2017:149-58.
  16. 16. Fehr AR, Perlman S. Corona viruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1-23. doi: 10.1007/978-1-4939-2438-7_1, PMID 25720466.
  17. 17. Lundin A, Dijkman R, Bergström T, Kann N, Adamiak B, Hannoun C, Kindler E, Jónsdóttir HR, Muth D, Kint J, Forlenza M, Müller MA, Drosten C, Thiel V, Trybala E. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse corona viruses including the Middle East respiratory syndrome virus. PLOS Pathog. 2014;10(5):e1004166. doi: 10.1371/journal.ppat.1004166, PMID 24874215.
  18. 18. Zhou Y, Simmons G. Development of novel entry inhibitors targeting emerging viruses. Expert Rev Anti Infect Ther. 2012;10(10):1129-38. doi: 10.1586/eri.12.104, PMID 23199399.
  19. 19. Mitchell CA, Ramessar K, O’Keefe BR. Antiviral lectins: selective inhibitors of viral entry. Antiviral Res. 2017;142:37-54. doi: 10.1016/j.antiviral.2017.03.007, PMID 28322922.
  20. 20. Keyaerts E, Vijgen L, Pannecouque C, Van Damme E, Peumans W, Egberink H, Balzarini J, Van Ranst M. Plant lectins are potent inhibitors of corona viruses by interfering with two targets in the viral replication cycle. Antiviral Res. 2007;75(3):179-87. doi: 10.1016/j.antiviral.2007.03.003, PMID 17428553.
  21. 21. Mori T, O’Keefe BR, Sowder RC, Bringans S, Gardella R, Berg S, Cochran P, Turpin JA, Buckheit RW, McMahon JB, Boyd MR. Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. J Biol Chem. 2005;280(10):9345-53. doi: 10.1074/jbc.M411122200, PMID 15613479.
  22. 22. O’Keefe BR, Giomarelli B, Barnard DL, Shenoy SR, Chan PK, McMahon JB, Palmer KE, Barnett BW, Meyerholz DK, Wohlford-Lenane CL, McCray PB. Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J Virol. 2010;84(5):2511-21. doi: 10.1128/JVI.02322-09, PMID 20032190.
  23. 23. Mycroft-West CJ, Yates EA, Skidmore MA. Marine glycosaminoglycan-like carbohydrates as potential drug candidates for infectious disease. Biochem Soc Trans. 2018;46(4):919-29. doi: 10.1042/BST20170404, PMID 30026370.
  24. 24. Kim SY, Jin W, Sood A, Montgomery DW, Grant OC, Fuster MM, Fu L, Dordick JS, Woods RJ, Zhang F, Linhardt RJ. Characterization of heparin and severe acute respiratory syndrome-related corona virus 2 (SARS-CoV-2) spike glycoprotein binding interactions. Antiviral Res. 2020;181:104873. doi: 10.1016/j.antiviral.2020.104873.
  25. 25. Damonte EB, Matulewicz MC, Cerezo AS. Sulfated seaweed polysaccharides as antiviral agents. Curr Med Chem. 2004;11(18):2399-419. doi: 10.2174/0929867043364504, PMID 15379705.
  26. 26. Kwon PS, Oh H, Kwon SJ, Jin W, Zhang F, Fraser K, Hong JJ, Linhardt RJ, Dordick JS. Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discov. 2020;6:50. doi: 10.1038/s41421-020-00192-8, PMID 32714563.
  27. 27. Morokutti-Kurz M, Graf F, Grassauer A, et al. SARS-CoV-2 in-vitro neutralization assay reveals inhibition of virus entry by iota-carrageenan. bioRxiv. 2020.
  28. 28. Chazal N, Gerlier D. Virus entry, assembly, budding, and membrane rafts. Microbiol Mol Biol Rev. 2003;67(2):226-37, table of contents. doi: 10.1128/MMBR.67.2.226-237.2003, PMID 12794191.
  29. 29. Chan RB, Tanner L, Wenk MR. Implications for lipids during replication of enveloped viruses. Chem Phys Lipids. 2010;163(6):449-59. doi: 10.1016/j.chemphyslip.2010.03.002, PMID 20230810.
  30. 30. Nomura R, Kiyota A, Suzaki E, Kataoka K, Ohe Y, Miyamoto K, Senda T, Fujimoto T. Human corona virus 229E binds to CD13 in rafts and enters the cell through caveolae. J Virol. 2004;78(16):8701-8. doi: 10.1128/JVI.78.16.8701-8708.2004, PMID 15280478.
  31. 31. Baglivo M, Baronio M, Natalini G, Beccari T, Chiurazzi P, Fulcheri E, Petralia PP, Michelini S, Fiorentini G, Miggiano GA, Morresi A, Tonini G, Bertelli M. Natural small molecules as inhibitors of corona virus lipid-dependent attachment to host cells: a possible strategy for reducing SARS-COV-2 infectivity? Acta Biomed. 2020;91(1):161-4. doi: 10.23750/abm.v91i1.9402, PMID 32191676.
  32. 32. Lorizate M, Kräusslich HG. Role of lipids in virus replication. Cold Spring Harb Perspect Biol. 2011;3(10):a004820. doi: 10.1101/cshperspect.a004820, PMID 21628428.
  33. 33. Fernández-Oliva A, Ortega-González P, Risco C. Targeting host lipid flows: exploring new antiviral and antibiotic strategies. Cell Microbiol. 2019;21(3):e12996. doi: 10.1111/cmi.12996, PMID 30585688.
  34. 34. Stonik VA. Marine polar steroids. Russ Chem Rev. 2001;70(8):673-715. doi: 10.1070/RC2001v070n08ABEH000679.
  35. 35. Gauvin A, Smadja J, Aknin M, et al. Isolation of bioactive 5α,8α-epidioxy sterols from the marine sponge Luffariella cf. variabilis. Can J Chem. 2000;78:986-92.
  36. 36. McKee TC, Cardellina JH, Riccio RL, D’Auria MV, Iorizzi M, Minale L, Moran RA, Gulakowski RJ, McMahon JB, Buckheit RW, et al. HIV-Inhibitory natural products. 11. Comparative studies of sulfated sterols from marine invertebrates. J Med Chem. 1994;37(6):793-7. doi: 10.1021/jm00032a012, PMID 8145229.
  37. 37. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS corona virus. Nature. 2003;426(6965):450-4. doi: 10.1038/nature02145, PMID 14647384.
  38. 38. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052, PMID 32142651.
  39. 39. Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pöhlmann S. Human corona virus NL63 employs the severe acute respiratory syndrome corona virus receptor for cellular entry. Proc Natl Acad Sci U S A. 2005;102(22):7988-93. doi: 10.1073/pnas.0409465102, PMID 15897467.
  40. 40. Sato AK, Viswanathan M, Kent RB, Wood CR. Therapeutic peptides: technological advances driving peptides into development. Curr Opin Biotechnol. 2006;17(6):638-42. doi: 10.1016/j.copbio.2006.10.002, PMID 17049837.
  41. 41. Lazcano-Pérez F, Román-González SA, Sánchez-Puig N, Arreguin-Espinosa R. Bioactive peptides from marine organisms: a short overview. Protein Pept Lett. 2012;19(7):700-7. doi: 10.2174/092986612800793208, PMID 22489781.
  42. 42. Vilas Boas LCP, Campos ML, Berlanda RLA, de Carvalho Neves N, Franco OL. Antiviral peptides as promising therapeutic drugs. Cell Mol Life Sci. 2019;76(18):3525-42. doi: 10.1007/s00018-019-03138-w, PMID 31101936.
  43. 43. Aneiros A, Garateix A. Bioactive peptides from marine sources: pharmacological properties and isolation procedures. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;803(1):41-53. doi: 10.1016/j.jchromb.2003.11.005, PMID 15025997.
  44. 44. Semreen MH, El-Gamal MI, Abdin S, Alkhazraji H, Kamal L, Hammad S, El-Awady F, Waleed D, Kourbaj L. Recent updates of marine antimicrobial peptides. Saudi Pharm J. 2018;26(3):396-409. doi: 10.1016/j.jsps.2018.01.001, PMID 29556131.
  45. 45. Rahman N, Basharat Z, Yousuf M, Castaldo G, Rastrelli L, Khan H. Virtual screening of natural products against type II transmembrane serine protease (TMPRSS2), the priming agent of corona virus 2 (SARS-CoV-2). Molecules. 2020;25(10):2271-83. doi: 10.3390/molecules25102271, PMID 32408547.
  46. 46. Gross H, König GM. Terpenoids from marine organisms: unique structures and their pharmacological potential. Phytochem Rev. 2006;5(1):115-41. doi: 10.1007/s11101-005-5464-3.
  47. 47. Mishra S, Pandey A, Manvati S. Coumarin: an emerging antiviral agent. Heliyon. 2020;6(1):e03217. doi: 10.1016/j.heliyon.2020.e03217, PMID 32042967.
  48. 48. Nakao Y, Masuda A, Matsunaga S, Fusetani N. Pseudotheonamides, serine protease inhibitors from the marine sponge Theonella swinhoei 1. J Am Chem Soc. 1999;121(11):2425-31. doi: 10.1021/ja9831195.
  49. 49. Walls AC, Tortorici MA, Xiong X, Snijder J, Frenz B, Bosch B, DiMaio F, Corti D, Rey FA, Veesler D. Structural studies of corona virus fusion proteins. Microsc Microanal. 2019;25(S2):1300-1. doi: 10.1017/S1431927619007232.
  50. 50. Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome corona virus entry. Proc Natl Acad Sci U S A. 2005;102(33):11876-81. doi: 10.1073/pnas.0505577102, PMID 16081529.
  51. 51. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582(7811):289-93. doi: 10.1038/s41586-020-2223-y, PMID 32272481.
  52. 52. He J, Hu L, Huang X, Wang C, Zhang Z, Wang Y, Zhang D, Ye W. Potential of corona virus 3C-like protease inhibitors for the development of new anti-SARS-CoV-2 drugs: insights from structures of protease and inhibitors. Int J Antimicrob Agents. 2020;56(2):106055. doi: 10.1016/j.ijantimicag.2020.106055.
  53. 53. Prajapat M, Sarma P, Shekhar N, Avti P, Sinha S, Kaur H, Kumar S, Bhattacharyya A, Kumar H, Bansal S, Medhi B. Drug targets for corona virus: A systematic review. Indian J Pharmacol. 2020;52(1):56-65. doi: 10.4103/ijp.IJP_115_20, PMID 32201449.
  54. 54. Xian Y, Zhang J, Bian Z, Zhou H, Zhang Z, Lin Z, Xu H. Bioactive natural compounds against human corona viruses: a review and perspective. Acta Pharmaceutica Sinica B. 2020;10(7):1163-74. doi: 10.1016/j.apsb.2020.06.002.
  55. 55. Imbs TI, Zvyagintseva TN. Phlorotannins are polyphenolic metabolites of brown algae. Russ J Mar Biol. 2018;44(4):263-73. doi: 10.1134/S106307401804003X.
  56. 56. Li YX, Wijesekara I, Li YK, Kim S. Phlorotannins as bioactive agents from brown algae. Process Biochem. 2011;46(12):2219-24. doi: 10.1016/j.procbio.2011.09.015.
  57. 57. Heffernan N, Brunton NP, FitzGerald RJ, Smyth TJ. Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins. Mar Drugs. 2015;13(1):509-28. doi: 10.3390/md13010509, PMID 25603345.
  58. 58. Park JY, Kim JH, Kwon JM, Kwon HJ, Jeong HJ, Kim YM, Kim D, Lee WS, Ryu YB. Dieckol, a SARS-CoV 3CL(pro) inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorg Med Chem. 2013;21(13):3730-7. doi: 10.1016/j.bmc.2013.04.026, PMID 23647823.
  59. 59. Rodrigues Felix CR, Gupta R, Geden S, Roberts J, Winder P, Pomponi SA, Diaz MC, Reed JK, Wright AE, Rohde KH. Selective killing of dormant mycobacterium tuberculosis by marine natural products. Antimicrob Agents Chemother. 2017;61(8):e00743–17. doi: 10.1128/AAC.00743-17, PMID 28607021.
  60. 60. Bergé JP, Barnathan G. Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Adv Biochem Eng Biotechnol. 2005;96:49-125. doi: 10.1007/b135782, PMID 16566089.
  61. 61. Suwannarach N, Kumla J, Sujarit K, Pattananandecha T, Saenjum C, Lumyong S. Natural bioactive compounds from fungi as potential candidates for protease inhibitors and immunomodulators to apply for corona viruses. Molecules. 2020;25(8):1800-21. doi: 10.3390/molecules25081800, PMID 32295300.
  62. 62. Pardo-Vargas A, de Barcelos Oliveira I, Stephens PR, Cirne-Santos CC, de Palmer Paixão IC, Ramos FA, Jiménez C, Rodríguez J, Resende JA, Teixeira VL, Castellanos L. Dolabelladienols A–C, New diterpenes isolated from Brazilian brown alga Dictyota pfaffii. Mar Drugs. 2014;12(7):4247-59. doi: 10.3390/md12074247, PMID 25056631.
  63. 63. Lira SPd, Seleghim MHR, Williams DE, Marion F, Hamill P, Jean F, Andersen RJ, Hajdu E, Berlinck RGS. A SARS-coronovirus 3CL protease inhibitor isolated from the marine sponge Axinella cf. corrugata: structure elucidation and synthesis. J Braz Chem Soc. 2007;18(2):440-3. doi: 10.1590/S0103-50532007000200030.
  64. 64. Singh KS, Majik MS. Bioactive alkaloids from marine sponges. In: Pallela R, Ehrlich H, editors, Marine sponges: chemicobiological and biomedical applications. Berlin: Springer; 2016. p. 257-86.
  65. 65. Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem. 2020;35(1):145-51. doi: 10.1080/14756366.2019.1690480, PMID 31724441.
  66. 66. Mansuri ML, Parihar P, Solanki I, Parihar MS. Flavonoids in modulation of cell survival signaling pathways. Genes Nutr. 2014;9(3):400. doi: 10.1007/s12263-014-0400-z, PMID 24682883.
  67. 67. Martins BT, Correia da Silva M, Pinto M, Cidade H, Kijjoa A. Marine natural flavonoids: chemistry and biological activities. Nat Prod Res. 2019;33(22):3260-72. doi: 10.1080/14786419.2018.1470514, PMID 29726719.
  68. 68. Rowley DC, Hansen MS, Rhodes D, Sotriffer CA, Ni H, McCammon JA, Bushman FD, Fenical W. Thalassiolins A-C: new marine-derived inhibitors of HIV cDNA integrase. Bioorg Med Chem. 2002;10(11):3619-25. doi: 10.1016/s0968-0896(02)00241-9, PMID 12213478.
  69. 69. Yao Y, Luo Z, Zhang X. In silico evaluation of marine fish proteins as nutritional supplements for COVID-19 patients. Food Funct. 2020;11(6):5565-72. doi: 10.1039/d0fo00530d, PMID 32520031.
  70. 70. Ashraf H. Cathepsin enzyme provides clue to SARS infection. Drug Discov Today. 2005;10(21):1409. doi: 10.1016/S1359-6446(05)03634-2, PMID 16243257.
  71. 71. Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, Pfefferle S, Steffen I, Tsegaye TS, He Y, Gnirss K, Niemeyer D, Schneider H, Drosten C, Pöhlmann S. Evidence that TMPRSS2 activates the severe acute respiratory syndrome corona virus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011;85(9):4122-34. doi: 10.1128/JVI.02232-10, PMID 21325420.
  72. 72. Liu T, Luo S, Libby P, Shi GP. Cathepsin L-selective inhibitors: A potentially promising treatment for COVID-19 patients. Pharmacol Ther. 2020;213:107587. doi: 10.1016/j.pharmthera.2020.107587.
  73. 73. Shah PP, Myers MC, Beavers MP, Purvis JE, Jing H, Grieser HJ, Sharlow ER, Napper AD, Huryn DM, Cooperman BS, Smith AB, Diamond SL. Kinetic characterization and molecular docking of a novel, potent, and selective slow-binding inhibitor of human cathepsin L. Mol Pharmacol. 2008;74(1):34-41. doi: 10.1124/mol.108.046219, PMID 18403718.
  74. 74. Miller B, Friedman AJ, Choi H, Hogan J, McCammon JA, Hook V, Gerwick WH. The marine cyanobacterial metabolite gallinamide A is a potent and selective inhibitor of human cathepsin L. J Nat Prod. 2014;77(1):92-9. doi: 10.1021/np400727r, PMID 24364476.
  75. 75. Kwan JC, Eksioglu EA, Liu C, Paul VJ, Luesch H. Grassystatins A-C from marine cyanobacteria, potent cathepsin E inhibitors that reduce antigen presentation. J Med Chem. 2009;52(18):5732-47. doi: 10.1021/jm9009394, PMID 19715320.
  76. 76. Schaschke N. Miraziridine A: natures blueprint towards protease class-spanning inhibitors. Bioorg Med Chem Lett. 2004;14(4):855-7. doi: 10.1016/j.bmcl.2003.12.030. PMID 15012981.
  77. 77. Tabares P, Degel B, Schaschke N, Hentschel U, Schirmeister T. Identification of the protease inhibitor miraziridine A in the Red Sea sponge Theonella swinhoei. Pharmacognosy Res. 2012;4(1):63-6. doi: 10.4103/0974-8490.91047, PMID 22224064.
  78. 78. Fusetani N, Fujita M, Nakao Y, Matsunaga S, Van Soest RW. Tokaramide A, a new cathepsin B inhibitor from the marine sponge Theonella aff. mirabilis. Bioorg Med Chem Lett. 1999;9(24):3397-402. doi: 10.1016/s0960-894x(99)00618-6, PMID 10617079.
  79. 79. Oli S, Abdelmohsen UR, Hentschel U, Schirmeister T. Identification of plakortide E from the Caribbean sponge Plakortis halichondroides as a trypanocidal protease inhibitor using bioactivity-guided fractionation. Mar Drugs. 2014;12(5):2614-22. doi: 10.3390/md12052614, PMID 24798927.
  80. 80. Pimentel-Elardo SM, Buback V, Gulder TAM, Bugni TS, Reppart J, Bringmann G, Ireland CM, Schirmeister T, Hentschel U. New tetromycin derivatives with anti-trypanosomal and protease inhibitor activities. Mar Drugs. 2011;9(10):1682-97. doi: 10.3390/md9101682, PMID 22072992.
  81. 81. Ahlquist P. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nat Rev Microbiol. 2006;4(5):371-82. doi: 10.1038/nrmicro1389, PMID 16582931.
  82. 82. Snijder EJ, Decroly E, Ziebuhr J. The nonstructural proteins directing corona virus RNA synthesis and processing. Adv Virus Res. 2016;96:59-126. doi: 10.1016/bs.aivir.2016.08.008, PMID 27712628.
  83. 83. Mustafa S, Balkhy H, Gabere MN. Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): a review. J Infect Public Health. 2018;11(1):9-17. doi: 10.1016/j.jiph.2017.08.009, PMID 28864360.
  84. 84. Li G, De Clercq ED. Therapeutic options for the 2019 novel corona virus (2019-nCoV). Nat Rev Drug Discov. 2020;19(3):149-50. doi: 10.1038/d41573-020-00016-0, PMID 32127666.
  85. 85. Singh S. Sk MS, Sonawane A, et al. J Biomol Struct Dyn. 2020 Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA‐dependent RNA polymerase (RdRp) inhibition: an in-silico analysis;28:1-16.
  86. 86. Yang N, Sun C, Zhang L, Liu J, Song F. Identification and analysis of novel inhibitors against NS3 helicase and NS5B RNA-dependent RNA polymerase from hepatitis C virus 1b (Con1). Front Microbiol. 2017;8:2153. doi: 10.3389/fmicb.2017.02153, PMID 29209282.
  87. 87. Harrison C. Coronavirus puts drug repurposing on the fast track. Nat Biotechnol. 2020;38(4):379-81. doi: 10.1038/d41587-020-00003-1, PMID 32205870.
  88. 88. Queiroz KC, Medeiros VP, Queiroz LS, Abreu LR, Rocha HA, Ferreira CV, Jucá MB, Aoyama H, Leite EL. Inhibition of reverse transcriptase activity of HIV by polysaccharides of brown algae. Biomed Pharmacother. 2008;62(5):303-7. doi: 10.1016/j.biopha.2008.03.006, PMID 18455359.
  89. 89. Wang K, Xie S, Sun B. Viral proteins function as ion channels. Biochim Biophys Acta. 2011;1808(2):510-5. doi: 10.1016/j.bbamem.2010.05.006, PMID 20478263.
  90. 90. Ye Y, Hogue BG. Role of the corona virus E viroporin protein transmembrane domain in virus assembly. J Virol. 2007;81(7):3597-607. doi: 10.1128/JVI.01472-06, PMID 17229680.
  91. 91. Lu W, Zheng BJ, Xu K, Schwarz W, Du L, Wong CK, Chen J, Duan S, Deubel V, Sun B. Severe acute respiratory syndrome-associated corona virus 3a protein forms an ion channel and modulates virus release. Proc Natl Acad Sci U S A. 2006;103(33):12540-5. doi: 10.1073/pnas.0605402103, PMID 16894145.
  92. 92. Teichert RW, Olivera BM. Natural products and ion channel pharmacology. Future Med Chem. 2010;2(5):731-44. doi: 10.4155/fmc.10.31, PMID 21426200.
  93. 93. Schwarz S, Sauter D, Wang K, Zhang R, Sun B, Karioti A, Bilia AR, Efferth T, Schwarz W. Kaempferol derivatives as antiviral drugs against the 3a channel protein of corona virus. Planta Med. 2014;80(2-3):177-82. doi: 10.1055/s-0033-1360277, PMID 24458263.
  94. 94. Sakai R, Swanson GT. Recent progress in neuroactive marine natural products. Nat Prod Rep. 2014;31(2):273-309. doi: 10.1039/c3np70083f, PMID 24430532.
  95. 95. Arias HR. Marine toxins targeting ion channels. Mar Drugs. 2006;4(3):37-69. doi: 10.3390/md403037.
  96. 96. Khalifa SAM, Yosri N, El-Mallah MF, Ghonaim R, Guo Z, Musharraf SG, Du M, Khatib A, Xiao J, Saeed A, El-Seedi HHR, Zhao C, Efferth T, El-Seedi HR Screening for natural and derived bio-active compounds in preclinical and clinical studies: one of the frontlines of fighting the corona viruses pandemic. Phytomedicine. 2021;85:153311. doi: 10.1016/j.phymed.2020.153311. PMID 33067112.
  97. 97. Marsden MD, Loy BA, Wu X, Ramirez CM, Schrier AJ, Murray D, Shimizu A, Ryckbosch SM, Near KE, Chun TW, Wender PA, Zack JA. In vivo activation of latent HIV with a synthetic bryostatin analog effects both latent cell ”kick” and ”kill” in strategy for virus eradication. PLOS Pathog. 2017;13(9):e1006575. doi: 10.1371/journal.ppat.1006575, PMID 28934369.
  98. 98. Martinez JP, Sasse F, Brönstrup M, Diez J, Meyerhans A. Antiviral drug discovery: broad-spectrum drugs from nature. Nat Prod Rep. 2015;32(1):29-48. doi: 10.1039/c4np00085d, PMID 25315648.