Main Article Content

Abstract

Qualitative analysis of the extract revealed that it contains Glycosides, Alkaloids, Tannins, Proteins and amino acids, Phytosterol and Steriods, Terpenoids, Saponins. The anticancer activity of ethanolic extract of Cucumis sativus Linn (EECS) was studied on the Various cell line HeLa, HepaG2 by using MTT Assay method. The EECS at dose 62.5 µg, 125 µg,  250 µg, 500 µg, produced a significant anticancer activity against HeLa and HepG2 cancer cell lines.When compare the % cell inhibition of HeLa and HepG2, HepG2 is giving more significant activity than HeLa. It shows that triterpenoids present in extract may be possibly responsible for the anticancer activities.

Keywords

Cucumis sativus Anticancer Liver Cancer Cervical Cancer

Article Details

How to Cite
Gomathi Swaminathan, Dr.R. Shanmuga Sundaram, M. Mamatha, & P. Vaijayanthimala. (2021). Evaluation of in vitro anticancer activity of cucumis sativus linn leaves. International Journal of Research in Pharmacology & Pharmacotherapeutics, 4(2), 224-230. https://doi.org/10.61096/ijrpp.v4.iss2.2015.224-230

References

  1. 1. Sakarkar DM, Deshmukh VN, Ethno pharmacological Review of Traditional Medicinal Plants for Anticancer Activity, International Journal of Pharm Tech Research, 3:298 – 308.
  2. 2. Joy PP, Thomas J, Samuel Mathew, Baby Skaria, Medicinal plants, 1998: 3-6.
  3. 3. Kokate CK, Purhoit AP, Gokhale SB, “Pharmacognosy”, Nirali Publication, Pune, 16th Edition, 2001:134, 196, 435.
  4. 4. Mohammed Ali, Text Book of Pharmacognosy, CBS Publishers and Distributors, 1st Edition, 1994:1 – 3.
  5. 5. http:/www.herpalace.com/alternative-medicine/herbal-medicine.
  6. 6. Trease and Evans, “A Textbook of Pharmacognosy”, Saunder’s Elsevier 15th Edition, p.3, 4, 394, 419, 470.
  7. 7. Schulz, Hansel VR & Tyler VE, Rational phytotherapy. A physicians Guide to Herbal Medicine, 4th Ed, Berlin, Springer-verlag, 2001.
  8. 8. Li L, Opportunity and challenge of traditional chinese medicine in face of the entrance to WTO (World Trade Organization). Chin. Inform. trade. chin. Med., 2000: 7-8(in chinese).
  9. 9. Satio H, Regulation of herbal medicines in japan. Pharmacol. Regul. 41, 2000:.515-519.
  10. 10. Morgan K, Medicine of the Gods: Basic principles of Ayurvedic Medicine (http:// www. Compulink. Co.ut /~mandrake/ Ayurveda.htm), 2002.
  11. 11. WHO guidelines on safety monitoring of herbal medicines in pharmacovigilance systems. 2004:5, 6.
  12. 12. Kirtikar & Basu, The Indian Medicinal Plants, vol. 2, 1993: 1144.
  13. 13. Khare CP, Indian medicinal plants, 2007:183.
  14. 14. Hisharo kai, Masaki baba, and Toru okuyama, Two New Megastigmanes from the leaves of Cucumis sativus, Chem pharm. Bull, 2007; 55:133-136.
  15. 15. Hideki Horie, Hidekazu ito, Katsunari ippoushi, Keiko azuma, Yoshiteru sakata and Isamu igarashi, Cucurbitacin C-Bitter Principle in Cucumber Plants, Jarq, 2007; 41: 65-68.
  16. 16. Kumar D, Kumar S, Singh J, Narener, Rashmi, Vashista BD, and Singh N, Free Radical Scavenging and Analgesic Activities of Cucumis sativus L. Fruit Extract, J Young pharm, 2010; 2(4):365-368.
  17. 17. Amand Paul C. St and Wehner Todd C, Greenhouse, Detached-leaf, and Field Testing Methods to Determine Cucumber Resistance to Gummy Stem Blight, J Amer. Soc. Hort. Sci 1995; 120(4):673-680.
  18. 18. Mohsen Minaiyan, Behzad Zolfaghari, Amin Kamal, Effect of Hydroalcoholic and Buthanolic Extract of Cucumis sativus Seeds on Blood Glucose Level of Normal and Streptozotocin-Induced Diabetic Rats, Iranian Journal of Basic Medical Sciences 2011; 4(5) : 436-442.
  19. 19. David M. Pharr, Steven C. Huber, and Harriet N. Sox, Leaf Carbohydrate Status and Enzymes of Translocate Synthesis in Fruting and Vegetative Plants of Cucumis sativus L., Plant Physiol. 1985; 77:104-108.
  20. 20. Jun Ohkawa, Naosuke Okada, Atsuhiko Shinmyo, and Mitsuo Takano, Primary structure of cucumber (Cucumis sativus) ascorbate oxidase deduced from Cdna sequence: Homology with blue copper proteins and tissue-specific expression, Prac. Natl. Acad. Sci. USA, 1989; 86:1239-1243.
  21. 21. Joysree Das, Anusha Chowdary, Subrata Kumar Biswas, Utpal Kumar Karmakar, Syeda Ridita Sharif, Sheikh Zahir Raihan and Md Abdul Muhit., Cytotoxicity and Antifungal Activities of Ethanolic and Chloroform Extracts of Cucumis sativus Linn (Cucurbitaceae) Leaves and Stems, Research Journal of Phytochemistry 2012; 1: 1819-3471.
  22. 22. Gill NS, Garg M, Bansal R, Sood S, Muthuraman A, Bali M, and Sharma PD, Evaluation of Antioxidant and Antiulcer Potential of Cucumis sativum L. seed Extract in Rats, Asian Journal of Clinical Nutrition 2009; 1:131-138.
  23. 23. Charles R. Caldwell, Estimation and Analysis of Cucumber (Cucumis sativus L.) Leaf Cellular Heat Sensitivity, Plant Physiol, 1993; 101:939-945.
  24. 24. Sudheesh S, and Vijayalakshmi NR, Role of pectin from Cucumber (Cucumis sativus) in modulation of protein kinase C activity and regulation of glycogen metabolism in rats, Indian Journal of Biochemistry & Biophysics 2007; 44:183-185.
  25. 25. Patrizia De Nisi and Graziano Zocchi, Phosphoenolpyruvate carboxylase in cucumber (Cucumis sativus L.) roots under iron deficiency: activity and kinetic characterization, Journal of Experimental Botany 1903; 55:1909.
  26. 26. Senthil V, Ramasamy P, Elaiyaraja C, and Ramola Elizabeth A, Some Phytochemical Prosperities Affected by the Infection of Leaf Spot Disease of Cucumis sativus (Linnaeus) Caused by Pencillium notatum, African Journal of Basic & Applied Sciences, 2010; 2 (3-4):64-70.
  27. 27. Jeffery F, Derr and Thomas J, Monaco, Ethalfluralin Activity in Cucumber (Cucumis sativus), Jstor: Weed Science 1982; 30: 498-502.
  28. 28. Anisimov MM, Logachev VV, Sil Chenko AS, and Avilov SA, Influence of Triterpene Glycosides of the Holothurian Cucumaria japonica on Root Growth in Cucumis sativus L. Seedlings, Biology Bulletin 2004; 31:505-512.
  29. 29. Serquen Felix C, Bacher J, Staub JE, Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.) using random-amplified polymorphic DNA markers, Molecular Breeding 1997;3:257-268.
  30. 30. Neelesh K, Nema, Niladri Maity, Sushil K, Chaudary, Sarkar B, Mukherjee Pulok K, Matrix metalloproteinase-1 inhibitory activity of Cucumis sativus lyophilized juice.
  31. 31. Ronald Pierik, Wouter Verkerke, Rens, Blom and Eric Visser, Thick Root Syndrome in Cucumber (Cucumis sativus L.) A Description of the Phenomenon and an Investigation of the Role of Ethylene, Annals of Botany1999; 84:755-762.
  32. 32. Solange AB, Dos Santos, Ana C, Roselino and Luci R, Bego, Pollination of cucumber, Cucumis sativus L. (Cucurbitales: Cucurbitaceae), by the Stingless Bess Scaptotrigona aff. Depilis Moure and Nannotrigona testaceicornis Lepeletier (Hymenoptera: Meliponini) in Greenhouses, Neotropical Entomology 2008; 37 (5): 506-512.
  33. 33. Zhujun Zhu, Guoqiang Wel, Juan Li, Qiongqiu Qian, Jingquan Yu, Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.), Plant Science2004; 167(3);527-535.
  34. 34. Naresh Singh Gill and Manoj Rali, Evaluation of Antioxidant, Anti-ulcer Activity of 9-beta-methyl-19-norlanosta-5-ene Type Glycosides from Cucumis sativus seeds, Reaserch Journal of Medicinal Plant 2012; 6(4):309-317.
  35. 35. Harborne JB, Phytochemical Method, A Guide to modern techniques of plant Analysis, Springer (India) Pvt. Ltd, New Delhi, 3rd edition, 2005:5-16, 22.
  36. 36. Krishnaswamy NR, Chemistry of Natural Products, A laboratory hand book, Universities press India (Pvt.) Ltd, Hyderabad, 1st edition , 2003:15, 26-60, 70-73, 87-88.
  37. 37. Gurudeep R Chatwal, Sham K Anand, Instrumental methods of Chemical Analysis, Himalaya publishing house Mumbai, 5th revised edition, 2003:567.
  38. 38. Dr. Kasture AV, Dr. Wadodkar SG, Dr. Mahadik KR, Dr. More HN, Pharmaceutical Analysis, Nirali Prakashan, Pune, , 9th edition, 2003: vol II, 16.
  39. 39. Mosmann T, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, Journal of Immunological Methods, vol. 65, 55-63.
  40. 40. Monks A, Feasibility of high flux anticancer drug screen using a diverse panel of cultured human tumour cell lines, Journal of the National Cancer Institute, vol. 83, 757-766