Main Article Content

Abstract

Diabetes mellitus is a chronic metabolic disorder that imposes a huge health and economic burden on societies. Because the currently available medications have many drawbacks, it is important to search for alternative therapies. Medicinal plants used in traditional medicines are ideal candidates. Hence, this study was undertaken to investigate the anti-diabetic activity of methanolic extract of Pisonia alba(MEPA). The antihyperglycemic activity was assessed using streptozotocin-induced diabetic model. Experimental diabetes was induced by a single intraperitoneal injection of streptozotocin at a dose of 150 mg/kg and animals with fasting blood glucose level (BGL) > 200 mg/dL were considered diabetic. Glibenclamide (5 mg/kg) was used as a standard drug. Fasting BGL and body weight were used to assess the antidiabetic activity; the characterization was performed using the different analytical techniques. The result was analyzed using GraphPad Prism software version 8 and one-way ANOVA followed by Tukey’s post hoc test with p< 0.05 considered as statistically significant. The MEPA (500 mg/kg) showed a significant BGL reduction in all the three animal models. MEPA showed a significant antihyperglycemic activity in STZ induced diabetic mice, hypoglycemic activity and improvement of oral glucose tolerance in normal animals. The findings of the study strongly are strong evidences for the anti-hyperglycemic potential of the MEPA. MEPAs antihyperglycemic activity by inhibiting the glycogenolytic pathway and by improving peripheral utilization of glucose by acting as insulin mimetic agent. The effect may be attributed to the presence of bio-actives such as scopoletin, coumarin, gallic acid, ellagic acid and epicatechin.

Keywords

Diabetes mellitus Streptozotocin α-amylase Medicinal plant Pisonia alba

Article Details

How to Cite
Abhenaya K, Perumal P, & Priya J. (2021). Anti-diabetic activity, characterization and derivation of proposed mechanism of action of pisoniaalba. International Journal of Research in Pharmacology & Pharmacotherapeutics, 10(1), 80-96. https://doi.org/10.61096/ijrpp.v10.iss1.2021.80-96

References

  1. [1]. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabetic Med, 15(7), 1998, 539–553. doi:10.1002/(ISSN)1096-9136
  2. [2]. Deshmukh CD, Jain A. Diabetes mellitus: a review.Int J Pure ApplBiosci, 3, 2015, 224–230.
  3. [3]. Soumya D, Srilatha B. Late stage complications of diabetes and insulin resistance. J Diabetes Metab, 2(9), 2011, 1000167.
  4. [4]. Hall V, Thomsen RW, Henriksen O, Lohse N. Diabetes in Sub Saharan Africa 1999–2011: epidemiology and public health implications. A systematic review. BMC Public Health, 11(1), 2011, 564. doi:10.1186/1471-2458-11-564
  5. [5]. Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res ClinPract, 128, 2017, 40–50. doi:10.1016/j.diabres.2017.03.024
  6. [6]. Piero MN, Nzaro GM, Njagi JM. Diabetes mellitus-a devastating metabolic disorder. Asian J Biomed Pharm Sci, 5(40), 2015, 1–7.
  7. [7]. Bastaki A. Diabetes mellitus and its treatment. Int J Diabetes Metab, 13(3), 2005, 111–134.
  8. doi:10.1159/000497580
  9. [8]. Sakthiswary R, Zakaria Z, Das S. Diabetes mellitus: treatment challenges and the role of some herbal therapies. Middle East J Sci Res, 20(7), 2014, 786–798.
  10. [9]. Mollica A, Zengin G, Locatelli M, et al. An assessment of the nutraceutical potential of Juglansregia L. leaf powder in diabetic rats. Food and Chem Toxicol, 107, 2017, 554–564. doi:10.1016/j.fct.2017.03.056
  11. [10]. Stefanucci A, Zengin G, Locatelli M, et al. Impact of different geographical locations on varying profile of bioactive and associated functionalities of caper (Capparisspinosa L.). Food Chem Toxicol, 118, 2018, 181–189. doi:10.1016/j.fct.2018.05.003.
  12. [11]. Singha S, Bawari M, Choudhury MD. Hepatoprotective and antipyretic effect of bark of Nyctanthesarbortristis Linn. Int J Pharm PharmSci, 6(2), 2014, 110-4.
  13. [12]. https://commons.wikimedia.org/wiki/File, 2019.
  14. [13]. Karunanayake, E. H., Hearse, D. J., & Mellows, G. The metabolic fate and elimination of streptozotocin. Biochemical Society Transactions, 3(3), 1974, 410-414.
  15. [14]. Takashaki, M., Kinno, C. and Hikino, H. Isolation and hypoglycaemic activity of Anemarans A, B, C and D glycansofAnemarrhenaasphodeloides rhizomes. PlantaMedica. 51, 1985, 100-102.
  16. [15]. Beckett, A.H., Stenlake, J.B., Practical Pharmaceutical Chemistry, 4th edition, CBS Publishers and Distributors, II(85), 1997, 90-91.
  17. [16]. Wagner, H., Sabine Bladt., Plant Drug Analysis, A thin layer chromatography Atlas, Springer relag Berlin Hieelberg, (2), 1996; P.228-242.
  18. [17]. Chatwal, G.R., Anand, K.S., Instrumental Methods of Chemical Analysis, 1st edition, 1979, 2.566.
  19. [18]. N.S.Jeganathan and K.Kannan., HPTLC Method for Estimation of Ellagic acid and Gallic acid in Triphalachuranam Formulations., Research Journal of Phytochemistry, 2(1), 2008, 1-9.
  20. [19]. Dhalwal K., Biradar Y.S., Shinde V.M., Mahadik K.R. and Rajani M., Phytochemical evaluation and validation of a polyhebel formulation using HPTLC., Pharmacognosy Magazine., 4(14), 2008, 89-95.
  21. [20]. Elias, D., Prigozin, H., Polak, N., Rapoport, M., Lohse, A. W., & Cohen, I. R. Autoimmune diabetes induced by the beeta-cell toxin STZ: Immunity to the 60-kDa heat shock protein and to insulin. Diabetes, 43(8), 1994, 992-998.
  22. [21]. Campbell, I. L., Kay, T. W., Oxbrow, L., & Harrison, L. C. Essential role for interferongamma and interleukin-6 in autoimmune insulin-dependent diabetes in NOD/Wehi mice. Journalof Clinical Investigation, 87(2), 1991, 739.
  23. [22]. Osborn, M. J., Felts, J. M., &Chaikoff, I. L. Transitory increase in fat content and size of liver induced by insulin in alloxan-diabetic rats. Journal of Biological Chemistry, 203(1),1953, 173-181.
  24. [23]. Spiro, R. G., Ashmore, J., & Hastings, A. B. Studies on carbohydrate metabolism in rat liver slices XII. Sequence of metabolic events following acute insulin deprivation. Journal of BiologicalChemistry, 230(2),1958, 761-771.
  25. [24]. Steiner, D. F., & King, J. Induced synthesis of hepatic uridine diphosphate glucose-glycogen glucosyltransferase after administration of insulin to alloxan-diabetic rats. Journal of BiologicalChemistry, 239(5), 1964, 1292-1298.
  26. [25]. Anderson, J. W. (1974). Alterations in metabolic fate of glucose in the liver of diabetic animals. TheAmerican journal of clinical nutrition, 27(7), 1974, 746-755.
  27. [26]. Baquer, N. Z., Gupta, D., &Raju, J. Regulation of metabolic pathways in liver and kidney during experimental diabetes: effects of antidiabetic compounds. Indian Journal of Clinical Biochemistry, 13(2), 1998, 63-80.
  28. [27]. Pushparaj, P. N., Low, H. K., Manikandan, J., Tan, B. K. H., & Tan, C. H. Anti-diabetic effects of Cichoriumintybus in streptozotocin-induced diabetic rats. Journal ofEthnopharmacology, 111(2), 2007, 430-434.
  29. [28]. Briones, E. R., Mao, S. J. T., Palumbo, P. J. O., O'Fallon, W. M., Chenoweth, W., &Kottke, B. A. Analysis of plasma lipids and apolipoproteins in insulin-dependent and noninsulindependent diabetics. Metabolism, 33(1), 1984, 42-49.
  30. [29]. Kumar, V., Ahmed, D., Gupta, P. S., Anwar, F., &Mujeeb, MAnti-diabetic, anti-oxidant and anti-hyperlipidemic activities of Melastomamalabathricum Linn. Leaves in streptozotocin induced diabetic rats. BMC complementary and alternative medicine, 13(1), 2013, 222.
  31. [30]. Chika, A., & Bello, S. O. Antihyperglycaemic activity of aqueous leaf extract of Combretum micranthum (Combretaceae) in normal and alloxan-induced diabetic rats.Journal of ethnopharmacology, 129(1), 2010, 34-37.