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           In pharmaceutical research, artificial intelligence (AI) has emerged as a 

transformative tool that tackles persistent issues like high development costs, 

protracted timetables, and low clinical success rates. AI speeds up several phases 

of drug development, including target identification, virtual screening, hit-to-

lead optimisation, preclinical evaluation, and clinical trial design, through the 

integration of machine learning (ML), deep learning (DL), and advanced 

computational models. Prediction accuracy for protein structures, drug-target 

interactions, toxicity profiles, and ADMET attributes is improved by 

contemporary AI technologies like AlphaFold, DeepChem, Atomwise, and 

generative models like GANs and RNNs. De novo molecular design and AI-

driven virtual screening make it possible to quickly find new candidates with 

enhanced drug-like characteristics. Additionally, adaptive clinical trial systems, 

phenotype-based screening, and AI-based digital twins greatly increase clinical 

success. AI continues to influence the future of pharmaceutical manufacturing, 

nanomedicine, and personalised medicine despite issues with data quality, 

transparency, and interaction with conventional workflows. When taken as a 

whole, AI provides a scalable, economical, and effective framework that is 

revolutionising innovation in contemporary drug research and discovery. AI 

continues to transform pharmaceutical research and personalised treatment in 

spite of obstacles like data quality, openness, and regulatory concerns.  
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INTRODUCTION   

The process of finding a new medication is difficult, 

costly, and prone to failure. The average cost of 

developing a new medication is about $2.5 billion, 

and the process can take more than ten years [1]. 

Furthermore, only a tiny percentage of medication 

candidates that start clinical trials are ever approved 

by regulators [2]. In spite of the efforts, only 2.01% 

of a successful, commercially viable medication is 

the end product of drug development initiatives [3]. 

Significant barriers in traditional drug discovery and 

development contribute to their high costs, long 

schedules, and frequent failures. These obstacles 

include the resource-intensive nature of high-

throughput screening for lead compounds; the time-

consuming and tedious process of finding viable 

pharmacological targets; iterative and costly 

optimisation of lead drugs to improve safety, 

efficacy, and selectivity; and the difficulties 

associated with planning and conducting processes 

effective clinical trials, including as patient 

recruitment, data collecting, and analysis.[4] Drug 

development firms have used a variety of strategies 

to get around this problem, with artificial 

intelligence (AI) being crucial. For instance, a study 

conducted by the technology company Tech 

Emergence found that using AI to develop new 

drugs can accelerate the process by 2%, and a 

Goldman Sachs report estimated that as AI 

technology advances, the potential annual savings in 

this area are estimated to reach 28 billion dollars .[5]  

TECHNOLOGY AND ALGORIITHM 

RELATED IN DRUG DISCOVERY AND 

DEVELOPMENT  

 Deep learning (DL) is a subset of machine learning 

(ML), which is a branch of artificial intelligence (AI) 

.[6] AI is currently capable of performing DL and 

analysing more complicated algorithms. Numerous 

For the purpose of drug development, similar 

computational models have been created. Peptide 

synthesis, structure-based virtual screening, ligand-

based virtual screening, toxicity prediction, drug 

monitoring and release, pharmacodynamic 

modelling, quantitative structure-activity 

relationships, drug repositioning, 

polypharmacology, and physicochemical activities 

are just a few of the drug discovery processes that 

have made use of machine learning algorithms .[7]  

MACHINE LEARNING  

 Machine learning (ML) is the term for AI 

algorithms that use massive datasets to train models 

in order to learn rules, analyse fresh data, and make 

predictions and decisions. Three primary categories 

of ML exist: supervised education, Reinforcement 

learning and unsupervised learning.[8] In order to 

accurately anticipate new, unknown inputs, 

supervised learning entails training algorithms using 

labelled datasets with preset correct answers for each 

input. [9]With results like illness subtypes and target 

identification,(fig:1). For example, Chen et al. 

assembled 148,784 transcripts and 78,092 single 

genes from clean readings using the Trinity 

software.  

[10,11]  

MACHINE LEARNING ALGORITHMS  

The most popular machine learning algorithms used 

in drug research and discovery are Random Forest 

(RF), Support Vector Machine (SVM), Naïve 

Bayesian Classifier (NB), and kNearest Neighbours 

(kNN) and ANNs (Artificial Neural Networks) .The 

following is a summary of their contributions to drug 

development and discovery.  

 

K- NEAREST NUMBER (KNN)   

 A sample is assumed to fall into a certain category 

if the majority of the k-nearest samples (the closest 

neighbours in the feature space) that surround it fall 

into that group [12]. In order to increase the overall 

density of the medication-disease association matrix 

based on the kNN principle for drug repositioning 

research, Yang M et al. recently employed the 

weighted kNN (WkNN) technique .[13]  

  

NAIVE BAYESIAN CLASSIFIER (NB)  

Naive Bayesian classifier that can be used to train a 

model using a dataset of known categories is NB, 

which makes it possible to classify data from 

unknown categories . [14]The pharmaceutical 

industry has employed NB because of its ease of use, 

efficiency, and speed. For example, Shi H et al. 

trained a classifier to identify positive and negative 

samples of the pregnane X receptor (PXR) using the 

NB principle. The classification efficiency was then 

increased by using this classifier to differentiate 

between PXR activators and non-activators [15]  
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Figure 1:  Machine Learning Work Flow 

RANDOM FOREST (RF)  

RF is an ensemble or group of Classification and 

Regression Trees (CART) [16] that have been 

trained on datasets that are the same size as the 

training set bootstraps, which are produced by 

randomly resampling the training data. After a tree 

is built, a set of bootstraps—also known as out-of-

bag (OOB) samples—that do not contain any 

specific record from the original dataset are used as 

the test set. The OOB estimate of the generalisation 

error is the classification error rate for each test set. 

[17]   

SUPPORT VECTOR MACHINE (SVM)  

A two-class classification model is the SVM. It uses 

an interval learning approach. maximisation, which 

in turn means resolving a convex quadratic 

programming issue Predicting molecular 

interactions, binding affinity, and other 

characteristics between ligands and target proteins is 

essential. [18] Using a web database and a 

combination of SVM with Cfs subset evaluation and 

Best First-D1-N5 search, Jing-Fang Z et al. 

identified 324 neurotoxic compounds and 234 non-

neurotoxic compounds. The dataset utilised to build 

the neurotoxicity discriminant model was 

compounds. [19]  

ARTIFICIAL NEURAL NETWORK (ANNs)  

Artificial neural networks (ANNs) are computer 

programs that replicate the functioning of several 

processing units that resemble nerve cells and the 

fundamental biological processes by which they 

communicate and interact with one another. As 

direct analogues of biological NNs, artificial neural 

networks (ANNs) are a subset of machine learning. 

ANNs can learn from experiences and comprehend 

the broad correlations between variables, just like 

the human brain.(20)  

  

DEEP LEARNING ALGORITHM  

 DL algorithms for drug discovery usually consist of 

convolutional neural networks (CNNs), generative 

adversarial networks (GANs), and recurrent neural 

networks (RNNs). All of them play critical role in 

drug discovery and development, which have been 

summarized as following.  

CONVOLUTIONAL NEURAL NETWORK 

(CNNs)  

Convolutional filters, which are usually tiny 

matrices of 3 × 3 or 5 × 5 in size, are used by CNNs' 

convolutional layer to slide over the source image 

and extract particular features.  Consequently, 

following maximum pooling and average pooling by 

a pooling layer, there is less computation and a lower 

chance of overfitting. A completely connected layer 

receives these as an input after they have been 

compressed into a lengthwise vector. These 

characteristics are then used by the fully connected 

layer to classify images. (21)  

  

GENERATIVE ADVERSARIAL NETWORK 

(GANs)  

 A discriminator and a generator are necessary for a 

GAN to function. The generator generates new 

samples from random inputs, which are 

subsequently supplied to the discriminator. To 

discern between authentic and fraudulent. In order to 

produce more genuine sample data, these two 

elements constantly compete with one another (22). 

For example, a new CNN was built with dense 

networks. Dense networks expand the training space 



Dhamodhara Prasad., et al / Int. J. Res. Pharmacology & Pharmacotherapeutics, 14(1) 2026 [xxx-xxx] 

 

20  

and boost sequence generation efficiency by 

performing multilayer transmission on the GAN 

architecture's generator network  

(23).  

RECURRENT NEURAL NETWORK (RNNs )                                                                       

Due to  their capacity to handle images and time 

series, RNNs are especially crucial for information 

analysis based on sequences or time series. 

numerical data and discover data kinds that show 

forward and backward correlations because of the 

network's innate capacity to retain them. Sangrak et 

al. built an RNN model that greatly enhanced drug 

interaction extraction performance by combining 

positional characteristics, subtree inclusion features, 

and integration techniques. This model was based on 

the benefits of RNNs for data processing.[24]  

  

ARTIFICIAL INTELLIGENCE IN DRUG DICOVERY  

 

 
 

Figure 2: Artificial Intelligence In Drug Discovery 

  
AI IN TARGET IDENTIFICATION   

Finding appropriate pharmacological targets is a 

crucial stage in the drug development process 

because it defines the molecular mechanisms and 

biological pathways that can be altered to provide 

therapeutic effects. Algorithms for machine learning 

are essential for target  identification. These 

algorithms find possible disease-associated targets 

and rank them for more research by examining a 

variety of genomic, proteomic, and clinical data 

datasets [25].  The abundance of biological data, 

such as gene expression patterns, protein–protein 

interaction networks, and illness phenotypes, is one 

of the primary obstacles in target identification.  

(figure:2) Machine learning algorithms can uncover 

hidden relationships between biological entities and 

identify potential drug targets based on their 

expression patterns, functional annotations, and 

disease associations by using dimensionality 

reduction techniques like principal component 

analysis (PCA) and t-distributed stochastic 

neighbour embedding (t-SNE) [26].  

 Additionally, prospective drug targets can be ranked 

according to their druggability, safety profiles, and 

therapeutic relevance using machine learning 

algorithms that combine data from several sources.  

In this regard, machine learning is used by the Drug 

Gene Interaction Database (DGIdb). Algorithms to 

identify pharmacological targets from known 

interactions from approved medications and 

investigational compounds by curating and 

annotating known drug– gene interactions from 

various sources [27].  In order to identify possible 

targets based on their transcriptional fingerprints and 

functional annotations, the connectivity map 

(CMAp) also employs machine learning techniques 

to examine gene expression profiles from drug-

treated cells .The connection map was created to 

close a gap caused by the absence of techniques for 

methodically figuring out a compound's cellular 

effects and the unanticipated off-target activities that 
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would only be found later in the drug's life. 

Development procedure that can restrict the 

compound's application in medicine.[28]  

AI IN HIT IDENTIFICATION AND VIRTUAL 

SCREENING  

 A critical stage in the drug development process is 

virtual screening, which involves computationally 

analysing vast chemical libraries to  discover 

molecules with a strong propensity for binding or 

engage with a particular biological target [29]. The 

3D structure of the target is employed in structure-

based virtual screening (SBVS) to forecast how 

various chemicals will attach to the chosen pocket. 

This technique necessitates a thorough 

understanding of the molecular interaction site on 

the target [30]. In the past, docking simulations 

required creating several molecular postures and 

calculating the binding energy scores for each 

ligand-target interaction. Although promising , ML 

has played a significant role in ligand-based virtual 

screening (LBVS) techniques, employing  the 

characteristics of previously identified ligands for 

the particular target of interest . Quantitative 

StructureActivity Relationship (QSAR) prediction 

models have been widely used to identify potential 

drug candidates [31].   

   The latter is frequently employed in SBVS 

techniques, which depend on understanding the 

target protein's three-dimensional structure and 

substances to screen for candidate molecules with 

inhibitor activity. In this domain , [32].The creation 

of new scoring functions is receiving a lot of 

attention since they can help with further 

components of drug design, particularly lead 

compound optimisation, QSAR models, and the 

prediction of absorption, distribution, metabolism, 

excretion, and toxicity (ADMET) features. In 

practice , machine learning approaches have proven 

to effective better than conventional scoring 

algorithms [33].  

 New DL-based scoring algorithms are starting to 

gain traction for virtual screening tasks 

,convolutional neyral network (CNN) models in 

particular .  Large volumes of data may be processed 

by these models, which can also identify patterns in 

chemical structures that correspond to successful 

binding to biological targets.  Traditional ML 

techniques are anticipated to be increasingly 

replaced by DL scoring functions as more high-

quality experimental data becomes publically 

available. [34]  

AI IN VALIDATION PROCESS  

Validation is essential to ensuring the therapeutic 

relevance and efficacy of a putative target after it has 

been identified. This procedure has historically 

required a lot of in vitro and in vivo studies, which 

are expensive and time-consuming.  AI has given 

rise to computational models that mimic biological 

systems and forecast the consequences of altering a 

particular target, such as graph neural networks 

(GNNs) [35].  These models assess how tiny 

compounds interact with protein targets and how 

those interactions affect biological circuits.Target-

drug interaction prediction has benefited greatly 

from deep learning algorithms.  By reducing the 

need for lab trials, these computational methods 

speed up the validation process without sacrificing 

accuracy.(36)  

AI IN LEAD OPTIMIZATION  

 Lead optimisation uses iterative chemical 

alterations to enhance the potency, selectivity, and 

pharmacokinetic characteristics of possible drug 

candidates. Lead optimisation has historically 

depended on time-consuming and labour-intensive 

experimental techniques, such highthroughput 

screening, which frequently led to expensive failures 

and less-than-ideal compounds. A more methodical 

and data-driven approach to lead optimisation is 

provided by machine learning techniques, which 

enable increased accuracy and computational 

efficiency in predictions of the biological activity 

and drug-like characteristics of novel chemical 

analogues. The use of machine learning-based lead 

optimisation enables the prediction of the structure–

activity relationships (SARs) underpinning drug-

target interactions by learning from extensive 

databases of molecular architecture and related 

pharmacological activities. Through instruction 

Machine learning algorithms can identify molecular 

features and substructures that contribute to the 

desired biological effects using predictive models on 

annotated datasets of known compound activities. 

This reduces the need for expensive and time-

consuming experimental validation and guides 

logical design decisions. GANs and QSAR 

modelling have become more common machine 

learning techniques. In this way, the DeepChem 

framework use deep learning algorithms to 

accurately predict the biological activities of novel 

molecule analogues by directly learning molecular 

representations from chemical structures [37]. 

TABLE:  1summary of software platforms that 

utilize AI techniques,[38]  
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Table 1 

SOFTWARE PLATFORM  DESCRIPTION  KEY FEATURES  

DeepMind AlphaFold  

(Google, Mountain View, CA, USA) 

https://deepmind.google/technologies/alphafold   

Deep learning model for 
protein  

structure prediction  

Predicts protein  

structures with high  

accuracy  

Atomwise  

(Atomwise Inc., San Francisco, CA, USA)  

https://www.atomwise.com  

AI-driven drug discovery  

platform   

  

Virtual screening, lead 

optimization  

Recursion Pharmaceuticals  

(Recursion, Salt Lake City, UT, USA)    

https://www.recursion.com   

High throughput  

screening platform  

Cellular phenotypic 

analysis ,rare disease  

Benevolent AI  

(Benevolent AI, London, UK)                 

https://www.benevolent.com  

Drug discovery and 

development platform  

Predictive modelling, 

target identification  

Schrödinger Maestro  

 (Schrödinger, New York, NY, USA)               

https://www.schrodinger.com   

Molecular docking and 

simulations  

Molecular docking,  

QSAR  

modelling  

XtalPi  

(Quantum Pharm Inc., Boston, MA, USA)                    

https://www.xtalpi.com   

AI-driven drug  

crystal prediction  

Predicts drug crystal 

forms, stability  

  
  
AI IN PRECLINICAL AND CLINICAL 

DEVELOPMENT  

      The integration of AI and ML into clinical trials 
is a sophisticated approach that continues to change 
many aspects of clinical research. From patient 

recruitment to real-time adaption, predictive 
modelling, and guaranteeing ethical behaviour, these 
technologies provide a variety of instruments for 
speeding up the development of novel medical 
therapies in a patient-centric manner.[39- 41] AI-
driven digital twins can mimic virtual patient 
populations by predicting treatment results and 
doing away with the need for massive control 

groups, leading to quicker and more accurate clinical 
research. The AI teams working on clinical trial 
themes include DeepDrug (eMolFrag, eSynth, 
eToxPred, eDrugRes, eVir, eComb) and Benevolent 

AI (knowledge graphs and protein pocket analysis). 
Exscientia had expanded by 2024, and six AI-
designed drugs had begun clinical trials. These 
consist of oncological, psychosocial, and 

immunological therapy [42] .  

CLINICAL TRIAL DESIGN  

 Another area where AI is having a significant 

impact is clinical trial design. Clinical trials are 

usually the most costly and time-consuming stage of 

drug development, and a number of potential 

medications are derailed by inadequate patient 

selection, trial design, or side effects.  By evaluating 

treatment results, locating suitable candidates, and 

analysing patient data, artificial intelligence 

improves research endeavours. It is simpler to run 

studies with patients who are most likely to benefit 

from the medication when machine learning 

algorithms are able to classify patient groups based 

on genetic, clinical, and demographic variables [43].    

AI-powered adaptive trial designs can change 

treatment duration, dose, and even patient enrolment 

in real time based on outcomes. This Adaptive 

strategy expedites approval and optimises trial 

success. Natural Language Processing (NLP) 

techniques speed up the design and 

conceptualisation of trials by making it easier to 

quickly get information from clinical record, 

medical literature, and other textual sources. AI/ML 

helps create novel clinical trials by utilising machine 

learning techniques, data mining, predictive 

modelling, and natural language processing (NLP) 

[44] [45] .  

PREDICTING THE ABSORPTION, 

DISTRIBUTION, METABOLISM 

EXCRETION AND TOXICITY TOLERANCE 

(ADMET) PROPERTIES OF COMPOUNDS   

 Strong biological activity, advantageous 

physicochemical properties, superior ADMET 

qualities, and effective pharmacokinetic 

mechanisms. The failure of drug development 

efforts is largely due to the poor pharmacokinetic 

properties and possible toxicity of candidate 

molecules. Drug delivery methods with low levels 

of immunogenicity and toxicity are essential for 

measuring  the success of targeted interventions in 
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cancer therapies , a rapidly developing anticancer 

therapy paradigm . 

  By examining the chemical structures and 

characteristics of molecules, AI can be used to 

forecast the toxicity of drugs.(fig:3) ML algorithms 

that have been trained on toxicology datasets are 

able to anticipate negative consequences and 

recognise dangerous structural characteristics. 

During clinical studies, this prediction ability helps 

researchers prioritise safer drugs and minimise 

negative consequences.   

 

Figure 3: Role of AI In ADMET Prediction 

   
For example, presented the ADMETlab model, 

which is based on version 2.0 built with the Python 

Web framework Django and is based on in silico 

ADMET. With 17 physical chemistry, 13 medicinal 

chemistry, 23 ADME characterisation, 27 toxicity 

endpoints, and 8 toxicogenic rules, this model which 

is hosted on the AliCloud Ubuntu Linux system 

offers a wider variety of ADMET endpoints than its 

predecessor.[46]  

    

DE NOVO DESIGN OF BIOACTIVE SMALL 

MOLECULES BY AI  

 The goal of computational de novo design is to 

create novel chemical entities with desirable 

characteristics. [47] A novel approach to de novo 

molecular design based on generative artificial 

intelligence (AI) has just been put forth. It shows 

potential as a method of learning from known 

bioactive chemicals and creating new molecules on 

its own that have inherited synthesizability and 

bioactivity. [48]   

  Crucially, it is anticipated that these generative 

techniques would generate chemically accurate 

structures without requiring the explicit inclusion of 

building block libraries or guidelines for their fusion 

and chemical transformation. Nevertheless, up until 

now, generative AI has only been used for 

retroactive de novo design by the replication of 

known bioactive ligands or generative anticipated 

actions.   

    We use generative AI in this first prospective 

investigation to investigate if it can produce 

bioactive de novo designs that are truly 

synthesizable. There were two fundamental steps in 

the computational technique. Initially, we created a 

generic model that used a sizable, unfocused 

compound collection to learn the composition of 

druglike compounds.   

   We then improved this general model using more 

precise chemical characteristics from a small target-

focused library of actives. We used a recently 

published deep recurrent neural network (RNN) 

with long short-term memory (LSTM) cells for the 

general model. [49,50]  
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                                                 Figure 4: De Novo Drug Design  

CASE STUDY  

COVID -19  

The SARS-CoV-2 coronavirus that triggered the 

COVID-19 pandemic has brought forth formerly 

unheard-of worldwide issues in the areas of public 

health, economics, and society. As of October 2022, 

the extremely contagious virus had caused over 6.5 

million deaths and over 620 million confirmed cases 

since it first appeared in late 2019.  

 A promising tool that offers data-driven solutions to 

major challenges in managing the pandemic is 

artificial intelligence (AI). Advanced  Large-scale 

datasets pertaining to coronavirus transmission, 

disease progression, patient outcomes, population 

movement, and health care operations can be used to 

uncover insights utilising deep learning and machine 

learning approaches.   

DRUG DEVELOPMENT  

 Repurposing current medications is essential in the 

hunt for COVID-19 therapies due to the difficulty of 

drug design and clinical trials.  Mohapatra and 

colleagues used machine -  earning models to a Pub-

Chem dataset.  They used mathematical classifiers 

for supervised learning so that the system could 

learn from datasets with specifics and useful results.  

It was discovered that the naive Bayes classifier was 

the best option since it avoided the overfitting 

problems that random forest or sequential minimum 

optimisation algorithms had.  

The model's medication prediction accuracy was 

about 73%.  In the end, they concluded that 

amprenavir, an antiretroviral medication, was the 

most successful in combating COVID-19 infection. 

To find possible candidates for medication 

repurposing, researchers have performed drug-based 

prediction of antiviral activity against COVID-19.  

Using in vitro data encoded with chemical 

fingerprints that represent certain molecular 

substructures, Delijewski and Haneczok created a 

supervised machine learning model.  

 A crucial step in identifying drug effects and 

carrying out drug repurposing is investigating drug–

target interactions (DTIs).  A DTI prediction model 

that particularly incorporates protein sequence and 

structured data was presented by El-Behery et al. 

The model employs encoding approaches to extract 

features based on the physical and chemical 

characteristics of protein amino acid sequences. 

SMILES (Simplified Molecular Input Line Entry 

System) medication strings.  The interactions 

between medications and target proteins in human 

cells are then predicted using a variety of machine 

learning, deep learning, and ensemble learning 

techniques.  They found possible medications that 

might be repurposed by exploiting proteins impacted 

by COVID-19 infection in human cells.  For 

instance, they estimated that the ACE2 protein 

would interact with DB00691 and DB05203 with 

100% probability.  

 Identifying and diagnosing distinct medication-

disease interactions is the main obstacle in drug 

repurposing.  Several AI methods can significantly 

medication use and repurposing during the COVID-

19 pandemic.  Mohanty et al. employed machine 
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learning, deep learning, RNNs, CNNs, and deep 

belief network algorithms to quickly and precisely 

screen and output the needed medications after using 

the Repurpose Drug Database and Open 

Chemical/Drug Database as inputs for their model.   

 With the use of this method, pharmaceuticals can be 

repurposed without first undergoing toxicity testing, 

enabling the direct use of changed drugs in late-stage 

treatment. A key component of COVID-19 drug 

development is phenotype-based compound 

screening, which employs gene expression patterns 

and has advantages over target-based drug 

discovery. Researchers have used a mechanism-

driven neural network technique known as DeepCE, 

which combines graph neural networks with 

mechanisms for multi-head attention.  This method 

predicts distinct gene expression profiles impacted 

by unique chemical entities by modelling the 

connections between chemical substructures and 

genes as well as gene–gene interactions. To improve 

the data, the researchers also pulled useful 

information from the L1000 dataset.  This technique 

was used to repurpose medications for COVID-19.  

Ten new lead chemicals, including cyclosporine and 

chloramphenicol, that are consistent with the clinical 

findings were successfully identified by the 

researchers. [51]  

LIST OF AI TOOLS EMPLOYED IN 

DRUG DISCOVERY  

1) NEURAL GRAPH FINGERPRINTS:  

It is employed to forecast the new molecule. You can 

use it by going to https://github.com/HIPS/neural-

fingerprint. For the majority of medications to be 

found using virtual screening, they must be encoded 

as a fixed-size vector called a molecular fingerprint. 

One well-liked molecular fingerprint is the extended 

connectivity fingerprint (ECFP). In terms of 

interpretability, parsimony, and predictive 

performance, these neural graph fingerprints 

perform better than fixed fingerprints.   

   

2) DeepTOX:  

It is employed to forecast toxicity.  You can use it by 

going to www.bioinf.jku.at/research/DeepTox.  

Deep Learning inherently facilitates multi-task 

learning, which involves learning all harmful effects 

in a single neural network, hence learning highly 

informative chemical characteristics.  The DeepTox 

pipeline was developed to predict toxicity using 

deep learning.  The first step of DeepTox is to 

normalise the substances' chemical representations.  

After that, a lot of chemical descriptors are 

calculated and fed into machine learning techniques.  

After that, DeepTox trains models, assesses them, 

and creates ensembles by combining the best of 

them.  At last, DeepTox forecasts the toxicity of 

novel substances.  

  

 

 
Figure 5:  AI Tools Employed In Drug Discovery 

 

  



Dhamodhara Prasad., et al / Int. J. Res. Pharmacology & Pharmacotherapeutics, 14(1) 2026 [xxx-xxx] 

 

26  

3)DeepNeuralNet QSAR:  

 It is employed in the prediction of molecular 

activity. You can use it by going to 

https://github.com/Merck/DeepNeuralNet-QSAR. 

Quantitative structure-activity relationship (QSAR) 

models are often employed computational 

techniques in the drug discovery process. QSAR 

models are regression or classification models that 

use molecular structural features to forecast a 

molecule's biological activity. (fig:6)These models 

are usually used to help scientists better understand 

how structural changes impact a molecule's 

biological functions and to prioritise a list of 

potential molecules for upcoming lab trials.  

  

4) ORGANIC:   

This effective molecular production tool produces 

compounds with desired characteristics.  

You can use it by going to https://github. 

com/aspuru-guzik-group/ORGANIC. Based on 

Objective-Reinforced Generative Adversarial 

Networks (ORGAN), ORGANIC is a framework 

that can produce a distribution over molecular space 

that satisfies a set of desired metrics. This approach 

combines two machine learning techniques: 

Reinforcement Learning (RL) to bias this generative 

distribution towards particular qualities and a 

Generative Adversarial Network (GAN) to produce 

non-repetitive sensible molecular species.  

  

5) DEEPCHEM:   

 It is employed in a number of drug discovery job 

forecasts.  To use it, go to 

https://github.com/deepchem/deepchem. 

DeepChem is developed in Python and offers a 

feature-rich set of capabilities for using deep 

learning to solve cheminformatics and drug 

discovery issues.  Chemiformatics has used earlier 

deep learning frameworks, such as scikitlearn, but 

DeepChem is the first to use NVIDIA GPUs to speed 

up computation.[52]  

 

APPLICATION OF AI IN THE 

PHARMACEUTICAL INDUSTRY  

  From excipient selection and synthesis pathway 

prediction to process optimisation, drug design, 

supply chain, and preventative maintenance, among 

other areas, artificial intelligence is radically 

changing the pharmaceutical production process. 

AI's application in medicine Businesses have the 

ability to save a substantial amount of money and 

time at different phases of medication research and 

discovery. By identifying chemicals more rapidly 

and precisely predicting their effects, AI speeds up 

hit identification, lead optimisation, and preclinical 

testing. The drug discovery process, which typically 

takes three to six years, can be expedited by AI-

driven technologies. AI can shorten this period by 

one to two years by more accurately predicting 

therapeutic efficacy, toxicity, and ideal molecular 

configurations.  

 The average cost of producing a new drug is 

approximately $2.8 billion, of which 35% can be 

attributed to the cost of drug discovery [53]. AI can 

lower the cost of drug discovery by testing fewer 

molecules and enhancing the early-phase trial 

success rates. AI can also help optimise clinical trial 

designs, including patient recruitment, patient 

monitoring, and cutting trial duration and cost. By 

automating data gathering and processing, AI can 

help shorten the time required for clinical trials, 

enabling more effective patient outcome monitoring. 

Trials have been shortened by 15 to 30 percent as a 

result [54].  

   

 AI can help shorten the time it takes for medications 

to transition from Phase I to Phase III by anticipating 

side effects earlier and improving dosage 

techniques. AI-identified molecules have shown 

greater success rates in early stage clinical studies in 

contrast to those found by conventional techniques. 

Compared to the previous industry standards of 40–

65%, phase 1 trials for AI-discovered medications 

have attained success rates of 80–90%. The success 

rate for AI-discovered compounds in Phase 2 trials 

is about 40%, which is similar to past averages. The 

pharmaceutical industry may witness an increase in 

the likelihood of a drug successfully completing all 

clinical phases from 5–10% to 9-18% if these trends 

persist into phase 3 and beyond.(55)   

AI BASED ADVANCED APPLICATIONS  

AI BASED NANOROBOTICS FOR DRUG 

DELIVERY  

  The primary components of nanorobots are 

integrated circuits, sensors, power supplies, and safe 

data backups that are maintained by computational 

technologies like artificial intelligence [56]. They 

are designed to prevent the collision, identify the 

target, find and attach it, and then expel it from the 

body. The capacity of advanced nano/microrobots to 

navigate to the targeted region based on 

physiological parameters, such pH, improves their 

efficacy and lowers systemic adverse effects [57]. 

When developing implantable nanorobots for 

controlled drug and gene delivery, factors like dose 

adjustment, sustained release, and control release 

must be taken into account. Additionally, the drugs 

must be released automatically using AI tools like 

NNs, fuzzy logic, and integrators [58]. Microchip 

implants are utilised for both programmed release 

and implant location detection.  
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AI EMERGENCE IN NANOMEDICINE    

   For the effective diagnosis, treatment, and 

surveillance of intricate diseases like HIV, cancer, 

malaria, asthma, and multiple inflammatory 

disorders, nanomedicines employ nanotechnology 

with medications. Due to their improved efficacy 

and treatment, drug delivery modified by 

nanoparticles has gained importance in recent years 

, within the domains of therapeutic and diagnostics 

[59]. Many formulation development issues could 

be resolved by combining nanotechnology and 

artificial intelligence [60]. By examining the energy 

produced during the drug molecules' contact and 

keeping an eye on the circumstances that can cause 

the formulation to aggregate, a methotrexate 

nanosuspension was computationally created .  

Chemical calculations and coarse-grained modelling 

can help determine drug-dendrimer interactions and 

assess drug encapsulation with within the dendrimer. 

In addition , the impact of surface chemistry 

properties on the internalisation of nanoparticles into 

cells can be investigated using programs like 

LAMMPS and GROMACS [61].   

  

CURRENT CHALLENGES AND 

LIMITATIONS  

DATA QUALITY AND AVAILABILITY  

The availability of high quality annotated datasets 

for model training is a major obstacle in AIpowered 

drug development.  A major obstacle is data 

heterogeneity, which occurs when data originate 

from many sources including chemical structures, 

biological assays, and clinical trials.  Combining and 

coordinating these various data sources into a single  

AI training formats can be intricate and time-

consuming [62].  Additionally, biases in the training 

data might have a significant influence on the 

robustness, dependability along with model 

performance ;  For instance, the resulting model may 

show biases that restrict its generalisability and 

accuracy in practical applications if a dataset mostly 

represents a particular demographic or disease 

subset [63,64].  Careful data curation, reliable data 

pretreatment procedures, along with the 

development of strategies to migrate bias and 

guarantee data representativeness are all necessary 

in order to address these limitations.  

INTERPRETABILITY AND TRANSPARENCY  

The intrinsic complexity and opacity of AI systems 

provide a serious obstacle to their mainstream 

adoption. Many AI models, most notably DNNs, 

operate as "black boxes," making it difficult to 

understand the logic underlying their choices [65]. 

Concerns around trust, accountability, and the 

potential for inadvertent bias. In the healthcare 

industry, for example, it is essential for doctors to 

comprehend the logic behind an AI-powered 

diagnostic  systems aimed at enabling to make well-

informed judgements and guarantee patient safety 

[66].  

  

INTEGRATION IN TO EXISTING DRUG 

DEVELOPMENT PROCESS  

  

There are many obstacles to overcome when 

integrating AI techniques into current drug 

development processes. Rigid protocols and a heavy 

focus on established methodologies are common 

characteristics of traditional pharmaceutical 

operations [67]. The current infrastructure, 

workflows, and skills may need to be substantially 

modified to incorporate AI technologies . Adoption 

of these technologies may also be hampered by 

worries about data privacy, intellectual property, and 

the possible effects of AI on jobs in the 

pharmaceutical sector. [68]  

  

FUTURE PROSPECTIVES  

It is anticipated that AI-driven methods will become 

more and more prevalent in the future of drug 

discovery, allowing for improved comprehension of 

disease physiopathology and more precise 

predictions of drug-target interactions. AI models 

are going to trained using larger biological datasets, 

including as proteomics, metabolomics, genomes, 

and patient data from clinical trials, to find new drug 

candidates and optimise drug design to lower the 

chance of clinical trial failure [69-71].  

Furthermore, AI has the potential to revolutionize 

the design and execution of clinical trials in general 

by enhancing patient recruitment, monitoring, and 

data analysis. This is because sophisticated 

algorithms will make it possible to identify qualified 

candidates based on genetic and phenotypic profiles, 

guaranteeing that trials are carried out with the most 

suitable cohort of participants [72-74]  

  By using Big Data to customise treatments for each 

patient, AI will keep accelerating the development 

of personalised medications.  Because genetic, 

environmental, and lifestyle data can be analysed, 

highly customised treatment approaches will 

continue to be widely used, taking into account each 

patient's unique demands [75,76].   While predictive 

maintenance algorithms will minimise downtime 

and prevent equipment breakdowns, AI-driven 

digital twins will simulate and optimise 

manufacturing processes in real-time, enabling more 

responsive and agile manufacturing operations [77].  

    For example, the Health Insurance Portability and 

Accountability Act (HIPAA) Privacy Rule in the 

United States sets national standards to protect 
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individuals’ medical records and other identifiable 

health information, commonly referred to as 

protected health information (PHI). This regulation 

applies to healthcare providers, health plans, and 

healthcare clearinghouses that engage in specific 

electronic healthcare transactions [78].  

  

DISCUSSION:  
Owing to its capacity to deliver rapid , data-driven 

insights that conventional approaches are unable to 

provide, artificial intelligence has emerged as a 

potent force in contemporary drug discovery. Large 

biological and chemical datasets are analysed by AI 

techniques to rank compounds early in the discovery 

process, predict interactions, and uncover disease-

related targets. When compared to traditional trial-

and-error methods, this greatly reduces delays and 

increases accuracy. Deep learning scoring systems, 

generative models, and AI-based virtual screening 

have improved lead optimisation and hit detection. 

These methods provide new chemical compounds 

with enhanced drug-like characteristics while 

enabling effective prediction of binding affinity, 

molecular properties, and toxicity. Consequently , 

AI minimizes the need for labor – intensive 

experimental screening efforts thus creating new 

opportunities of early identification of good 

candidates. AI aids in pharmacokinetic modelling, 

toxicity evaluation, and ADMET prediction in 

preclinical and clinical research, assisting in the 

removal of inappropriate compounds prior to costly 

testing. Through improved patient selection, 

adaptive trial designs, and digital twin simulations, 

AI also enhances clinical trials, ultimately lowering 

failure rates and raising trial efficiency. 

Nevertheless, there are still obstacles in the way of 

completely incorporating AI into pharmaceutical 

processes. Regulatory acceptance, model 

transparency, and data quality remain significant 

challenges. Many sophisticated models function as 

"black boxes," which restricts trust and 

interpretability. Strong computing infrastructure, 

knowledgeable staff, and explicit policies about data 

privacy and intellectual property are also necessary 

for incorporating AI. For AI-driven drug discovery 

to be widely used, these problems must be resolved. 

CONCLUSION:  
 

With its creative answers to many of the 

shortcomings of conventional research approaches, 

artificial intelligence has emerged as a crucial pillar 

in current drug development. AI significantly 

reduces the time, cost, and uncertainty associated 

with drug development by enabling rapid target 

identification, more precise molecular behaviour 

prediction, and effective lead compound 

optimisation. Its use goes beyond early discovery; it 

has an impact on formulation design, clinical trial 

optimisation, preclinical modelling, toxicity 

prediction, and personalised medicine. Neural 

networks, generative models, and digital twins are 

examples of AI-driven tools that significantly 

improve decision-making and success rates along 

the pharmaceutical pipeline. Despite these 

advancements ,challenges related to data quality, 

model interpretability, ethical use, and regulatory 

compliance, current technology developments and 

trends in worldwide acceptance show that AI will 

continue to transform the pharmaceutical industry. 

As integration grows, AI offers safer clinical trials, 

more precise treatments, fewer development 

failures, and quicker access to new medications—all 

of which will improve patient outcomes and 

influence the direction of global healthcare in the 

future.  
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