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In pharmaceutical research, artificial intelligence (AI) has emerged as a
Published on: 28.01.2026 | transformative tool that tackles persistent issues like high development costs,
protracted timetables, and low clinical success rates. Al speeds up several phases

Published by: of drug development, including target identification, virtual screening, hit-to-
Futuristic Publications lead optimisation, preclinical evaluation, and clinical trial design, through the
integration of machine learning (ML), deep learning (DL), and advanced
2026| All rights reserved. computational models. Prediction accuracy for protein structures, drug-target
interactions, toxicity profiles, and ADMET attributes is improved by
contemporary Al technologies like AlphaFold, DeepChem, Atomwise, and
X generative models like GANs and RNNs. De novo molecular design and Al-
. driven virtual screening make it possible to quickly find new candidates with
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Attribution 4.0 enhanced drug-like characteristics. Additionally, adaptive clinical trial systems,
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success. Al continues to influence the future of pharmaceutical manufacturing,
nanomedicine, and personalised medicine despite issues with data quality,
transparency, and interaction with conventional workflows. When taken as a
whole, Al provides a scalable, economical, and effective framework that is
revolutionising innovation in contemporary drug research and discovery. Al
continues to transform pharmaceutical research and personalised treatment in
spite of obstacles like data quality, openness, and regulatory concerns.

Keywords: Artificial intelligence; Machine learning; Deep learning; Drug
discovery; Drug development; Virtual screening; ADMET prediction; Target
identification; De novo drug design; Clinical trials; Computational
pharmacology; Pharmaceutical innovation.
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INTRODUCTION

The process of finding a new medication is difficult,
costly, and prone to failure. The average cost of
developing a new medication is about $2.5 billion,
and the process can take more than ten years [1].
Furthermore, only a tiny percentage of medication
candidates that start clinical trials are ever approved
by regulators [2]. In spite of the efforts, only 2.01%
of a successful, commercially viable medication is
the end product of drug development initiatives [3].
Significant barriers in traditional drug discovery and
development contribute to their high costs, long
schedules, and frequent failures. These obstacles
include the resource-intensive nature of high-
throughput screening for lead compounds; the time-
consuming and tedious process of finding viable
pharmacological targets; iterative and costly
optimisation of lead drugs to improve safety,
efficacy, and selectivity; and the difficulties
associated with planning and conducting processes
effective clinical trials, including as patient
recruitment, data collecting, and analysis.[4] Drug
development firms have used a variety of strategies
to get around this problem, with artificial
intelligence (Al) being crucial. For instance, a study
conducted by the technology company Tech
Emergence found that using Al to develop new
drugs can accelerate the process by 2%, and a
Goldman Sachs report estimated that as Al
technology advances, the potential annual savings in
this area are estimated to reach 28 billion dollars .[5]

TECHNOLOGY AND ALGORIITHM
RELATED IN DRUG DISCOVERY AND
DEVELOPMENT

Deep learning (DL) is a subset of machine learning
(ML), which is a branch of artificial intelligence (AI)
.[6] AI is currently capable of performing DL and
analysing more complicated algorithms. Numerous
For the purpose of drug development, similar
computational models have been created. Peptide
synthesis, structure-based virtual screening, ligand-
based virtual screening, toxicity prediction, drug

monitoring and release, pharmacodynamic
modelling, quantitative structure-activity
relationships, drug repositioning,

polypharmacology, and physicochemical activities
are just a few of the drug discovery processes that
have made use of machine learning algorithms .[7]
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MACHINE LEARNING

Machine learning (ML) is the term for Al
algorithms that use massive datasets to train models
in order to learn rules, analyse fresh data, and make
predictions and decisions. Three primary categories
of ML exist: supervised education, Reinforcement
learning and unsupervised learning.[8] In order to
accurately anticipate new, unknown inputs,
supervised learning entails training algorithms using
labelled datasets with preset correct answers for each
input. [9]With results like illness subtypes and target
identification,(fig:1). For example, Chen et al.
assembled 148,784 transcripts and 78,092 single
genes from clean readings using the Trinity
software.

[10,11]

MACHINE LEARNING ALGORITHMS

The most popular machine learning algorithms used
in drug research and discovery are Random Forest
(RF), Support Vector Machine (SVM), Naive
Bayesian Classifier (NB), and kNearest Neighbours
(kNN) and ANNSs (Artificial Neural Networks) .The
following is a summary of their contributions to drug
development and discovery.

K- NEAREST NUMBER (KNN)

A sample is assumed to fall into a certain category
if the majority of the k-nearest samples (the closest
neighbours in the feature space) that surround it fall
into that group [12]. In order to increase the overall
density of the medication-disease association matrix
based on the kNN principle for drug repositioning
research, Yang M et al. recently employed the
weighted kNN (WKNN) technique .[13]

NAIVE BAYESIAN CLASSIFIER (NB)

Naive Bayesian classifier that can be used to train a
model using a dataset of known categories is NB,
which makes it possible to classify data from
unknown categories [14]The pharmaceutical
industry has employed NB because of its ease of use,
efficiency, and speed. For example, Shi H et al.
trained a classifier to identify positive and negative
samples of the pregnane X receptor (PXR) using the
NB principle. The classification efficiency was then
increased by using this classifier to differentiate
between PXR activators and non-activators [15]
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Figure 1: Machine Learning Work Flow

RANDOM FOREST (RF)

RF is an ensemble or group of Classification and
Regression Trees (CART) [16] that have been
trained on datasets that are the same size as the
training set bootstraps, which are produced by
randomly resampling the training data. After a tree
is built, a set of bootstraps—also known as out-of-
bag (OOB) samples—that do not contain any
specific record from the original dataset are used as
the test set. The OOB estimate of the generalisation
error is the classification error rate for each test set.
[17]

SUPPORT VECTOR MACHINE (SVM)

A two-class classification model is the SVM. It uses
an interval learning approach. maximisation, which
in turn means resolving a convex quadratic
programming issue Predicting molecular
interactions,  binding  affinity, and  other
characteristics between ligands and target proteins is
essential. [18] Using a web database and a
combination of SVM with Cfs subset evaluation and
Best First-D1-N5 search, Jing-Fang Z et al.
identified 324 neurotoxic compounds and 234 non-
neurotoxic compounds. The dataset utilised to build
the neurotoxicity discriminant model was
compounds. [19]

ARTIFICIAL NEURAL NETWORK (ANNs)

Artificial neural networks (ANNSs) are computer
programs that replicate the functioning of several
processing units that resemble nerve cells and the
fundamental biological processes by which they
communicate and interact with one another. As
direct analogues of biological NN, artificial neural
networks (ANNs) are a subset of machine learning.
ANNSs can learn from experiences and comprehend
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the broad correlations between variables, just like
the human brain.(20)

DEEP LEARNING ALGORITHM

DL algorithms for drug discovery usually consist of

convolutional neural networks (CNNs), generative
adversarial networks (GANs), and recurrent neural
networks (RNNs). All of them play critical role in
drug discovery and development, which have been
summarized as following.

CONVOLUTIONAL NEURAL NETWORK
(CNNs)

Convolutional filters, which are wusually tiny
matrices of 3 x 3 or 5 X 5 in size, are used by CNNs'
convolutional layer to slide over the source image
and extract particular features.  Consequently,
following maximum pooling and average pooling by
a pooling layer, there is less computation and a lower
chance of overfitting. A completely connected layer
receives these as an input after they have been
compressed into a lengthwise vector. These
characteristics are then used by the fully connected
layer to classify images. (21)

GENERATIVE ADVERSARIAL NETWORK
(GANs)

A discriminator and a generator are necessary for a
GAN to function. The generator generates new
samples from random inputs, which are
subsequently supplied to the discriminator. To
discern between authentic and fraudulent. In order to
produce more genuine sample data, these two
elements constantly compete with one another (22).
For example, a new CNN was built with dense
networks. Dense networks expand the training space
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and boost sequence generation efficiency by
performing multilayer transmission on the GAN
architecture's generator network

(23).

RECURRENT NEURAL NETWORK (RNNs )

Due to their capacity to handle images and time
series, RNNs are especially crucial for information

analysis based on sequences or time series.
numerical data and discover data kinds that show
forward and backward correlations because of the
network's innate capacity to retain them. Sangrak et
al. built an RNN model that greatly enhanced drug
interaction extraction performance by combining
positional characteristics, subtree inclusion features,
and integration techniques. This model was based on
the benefits of RNNs for data processing.[24]

ARTIFICIAL INTELLIGENCE IN DRUG DICOVERY

'Role of Al in Drug Discovery

(M1 [1}

Target Identification Lead Discover
& Validation & Optimization

Virtual Screening Clinical Trial Design
& Design & Optimization

Figure 2: Artificial Intelligence In Drug Discovery

AL IN TARGET IDENTIFICATION

Finding appropriate pharmacological targets is a
crucial stage in the drug development process
because it defines the molecular mechanisms and
biological pathways that can be altered to provide
therapeutic effects. Algorithms for machine learning
are essential for target identification. These
algorithms find possible disease-associated targets
and rank them for more research by examining a
variety of genomic, proteomic, and clinical data
datasets [25]. The abundance of biological data,
such as gene expression patterns, protein—protein
interaction networks, and illness phenotypes, is one
of the primary obstacles in target identification.
(figure:2) Machine learning algorithms can uncover
hidden relationships between biological entities and
identify potential drug targets based on their
expression patterns, functional annotations, and
disease associations by using dimensionality
reduction techniques like principal component
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analysis (PCA) and t-distributed stochastic
neighbour embedding (t-SNE) [26].

Additionally, prospective drug targets can be ranked
according to their druggability, safety profiles, and
therapeutic relevance using machine learning
algorithms that combine data from several sources.
In this regard, machine learning is used by the Drug
Gene Interaction Database (DGIdb). Algorithms to
identify pharmacological targets from known
interactions from approved medications and
investigational compounds by curating and
annotating known drug— gene interactions from
various sources [27]. In order to identify possible
targets based on their transcriptional fingerprints and
functional annotations, the connectivity map
(CMAp) also employs machine learning techniques
to examine gene expression profiles from drug-
treated cells .The connection map was created to
close a gap caused by the absence of techniques for
methodically figuring out a compound's cellular
effects and the unanticipated off-target activities that
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would only be found later in the drug's life.
Development procedure that can restrict the
compound's application in medicine.[28]

AL IN HIT IDENTIFICATION AND VIRTUAL
SCREENING

A critical stage in the drug development process is
virtual screening, which involves computationally
analysing vast chemical libraries to  discover
molecules with a strong propensity for binding or
engage with a particular biological target [29]. The
3D structure of the target is employed in structure-
based virtual screening (SBVS) to forecast how
various chemicals will attach to the chosen pocket.
This  technique  necessitates a  thorough
understanding of the molecular interaction site on
the target [30]. In the past, docking simulations
required creating several molecular postures and
calculating the binding energy scores for each
ligand-target interaction. Although promising , ML
has played a significant role in ligand-based virtual
screening (LBVS) techniques, employing the
characteristics of previously identified ligands for
the particular target of interest Quantitative
StructureActivity Relationship (QSAR) prediction
models have been widely used to identify potential
drug candidates [31].

The latter is frequently employed in SBVS
techniques, which depend on understanding the
target protein's three-dimensional structure and
substances to screen for candidate molecules with
inhibitor activity. In this domain , [32].The creation
of new scoring functions is receiving a lot of
attention since they can help with further
components of drug design, particularly lead
compound optimisation, QSAR models, and the
prediction of absorption, distribution, metabolism,
excretion, and toxicity (ADMET) features. In
practice , machine learning approaches have proven
to effective better than conventional scoring
algorithms [33].

New DL-based scoring algorithms are starting to
gain traction for virtual screening tasks
,convolutional neyral network (CNN) models in
particular . Large volumes of data may be processed
by these models, which can also identify patterns in
chemical structures that correspond to successful
binding to biological targets. Traditional ML
techniques are anticipated to be increasingly
replaced by DL scoring functions as more high-
quality experimental data becomes publically
available. [34]
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AI IN VALIDATION PROCESS

Validation is essential to ensuring the therapeutic
relevance and efficacy of a putative target after it has
been identified. This procedure has historically
required a lot of in vitro and in vivo studies, which
are expensive and time-consuming. Al has given
rise to computational models that mimic biological
systems and forecast the consequences of altering a
particular target, such as graph neural networks
(GNNs) [35]. These models assess how tiny
compounds interact with protein targets and how
those interactions affect biological circuits.Target-
drug interaction prediction has benefited greatly
from deep learning algorithms. By reducing the
need for lab trials, these computational methods
speed up the validation process without sacrificing
accuracy.(36)

AIIN LEAD OPTIMIZATION

Lead optimisation uses iterative chemical
alterations to enhance the potency, selectivity, and
pharmacokinetic characteristics of possible drug
candidates. Lead optimisation has historically
depended on time-consuming and labour-intensive
experimental techniques, such highthroughput
screening, which frequently led to expensive failures
and less-than-ideal compounds. A more methodical
and data-driven approach to lead optimisation is
provided by machine learning techniques, which
enable increased accuracy and computational
efficiency in predictions of the biological activity
and drug-like characteristics of novel chemical
analogues. The use of machine learning-based lead
optimisation enables the prediction of the structure—
activity relationships (SARs) underpinning drug-
target interactions by learning from extensive
databases of molecular architecture and related
pharmacological activities. Through instruction
Machine learning algorithms can identify molecular
features and substructures that contribute to the
desired biological effects using predictive models on
annotated datasets of known compound activities.
This reduces the need for expensive and time-
consuming experimental validation and guides
logical design decisions. GANs and QSAR
modelling have become more common machine
learning techniques. In this way, the DeepChem
framework use deep learning algorithms to
accurately predict the biological activities of novel
molecule analogues by directly learning molecular
representations from chemical structures [37].
TABLE: 1summary of software platforms that
utilize Al techniques,[38]
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Table 1
SOFTWARE PLATFORM DESCRIPTION KEY FEATURES
DeepMind AlphaFold Deep learning model for | Predicts protein
(Google, Mountain View, CA, USA) protein structures with high

structure prediction

https://deepmind.google/technologies/alphafold accuracy

Atomwise Al-driven drug discovery | Virtual screening, lead
(Atomwise Inc., San Francisco, CA, USA) platform optimization
https://www.atomwise.com

Recursion Pharmaceuticals High throughput Cellular phenotypic

(Recursion, Salt Lake City, UT, USA)
https://www.recursion.com

screening platform analysis ,rare disease

Benevolent Al
(Benevolent Al, London, UK)
https://www.benevolent.com

Drug discovery and
development platform

Predictive modelling,
target identification

Schrodinger Maestro Molecular docking and Molecular docking,
(Schrédinger, New York, NY, USA) simulations QSAR
https://www.schrodinger.com modelling

XtalPi Al-driven drug
(Quantum Pharm Inc., Boston, MA, USA) crystal prediction
https://www.xtalpi.com

Predicts drug crystal
forms, stability

Al IN PRECLINICAL AND CLINICAL studies with patients who are most likely to benefit

DEVELOPMENT

The integration of Al and ML into clinical trials
is a sophisticated approach that continues to change
many aspects of clinical research. From patient
recruitment to real-time adaption, predictive
modelling, and guaranteeing ethical behaviour, these
technologies provide a variety of instruments for
speeding up the development of novel medical
therapies in a patient-centric manner.[39- 41] Al-
driven digital twins can mimic virtual patient
populations by predicting treatment results and
doing away with the need for massive control
groups, leading to quicker and more accurate clinical
research. The Al teams working on clinical trial
themes include DeepDrug (eMolFrag, eSynth,
eToxPred, eDrugRes, eVir, eComb) and Benevolent
Al (knowledge graphs and protein pocket analysis).
Exscientia had expanded by 2024, and six Al-
designed drugs had begun clinical trials. These
consist of oncological, psychosocial, and
immunological therapy [42] .

CLINICAL TRIAL DESIGN

Another area where Al is having a significant
impact is clinical trial design. Clinical trials are
usually the most costly and time-consuming stage of
drug development, and a number of potential
medications are derailed by inadequate patient
selection, trial design, or side effects. By evaluating
treatment results, locating suitable candidates, and
analysing patient data, artificial intelligence
improves research endeavours. It is simpler to run
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from the medication when machine learning
algorithms are able to classify patient groups based
on genetic, clinical, and demographic variables [43].
Al-powered adaptive trial designs can change
treatment duration, dose, and even patient enrolment
in real time based on outcomes. This Adaptive
strategy expedites approval and optimises trial
success. Natural Language Processing (NLP)
techniques speed up the design and
conceptualisation of trials by making it easier to
quickly get information from clinical record,
medical literature, and other textual sources. AI/ML
helps create novel clinical trials by utilising machine
learning techniques, data mining, predictive
modelling, and natural language processing (NLP)
[44] [45] .

PREDICTING THE ABSORPTION,
DISTRIBUTION, METABOLISM
EXCRETION AND TOXICITY TOLERANCE
(ADMET) PROPERTIES OF COMPOUNDS

Strong  biological  activity, advantageous
physicochemical properties, superior ADMET
qualities, and effective pharmacokinetic
mechanisms. The failure of drug development
efforts is largely due to the poor pharmacokinetic
properties and possible toxicity of candidate
molecules. Drug delivery methods with low levels
of immunogenicity and toxicity are essential for
measuring the success of targeted interventions in
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cancer therapies , a rapidly developing anticancer
therapy paradigm .

By examining the chemical structures and
characteristics of molecules, AI can be used to
forecast the toxicity of drugs.(fig:3) ML algorithms

that have been trained on toxicology datasets are
able to anticipate negative consequences and
recognise dangerous structural characteristics.
During clinical studies, this prediction ability helps
researchers prioritise safer drugs and minimise
negative consequences.

ROLE OF Al IN ADMET PREDICTION
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Reduces time, cost, and failure rates
in early development.

Figure 3: Role of Al In ADMET Prediction

For example, presented the ADMETIlab model,
which is based on version 2.0 built with the Python
Web framework Django and is based on in silico
ADMET. With 17 physical chemistry, 13 medicinal
chemistry, 23 ADME characterisation, 27 toxicity
endpoints, and 8 toxicogenic rules, this model which
is hosted on the AliCloud Ubuntu Linux system
offers a wider variety of ADMET endpoints than its
predecessor.[46]

DE NOVO DESIGN OF BIOACTIVE SMALL
MOLECULES BY Al

The goal of computational de novo design is to
create novel chemical entities with desirable
characteristics. [47] A novel approach to de novo
molecular design based on generative artificial
intelligence (AI) has just been put forth. It shows
potential as a method of learning from known
bioactive chemicals and creating new molecules on
its own that have inherited synthesizability and
bioactivity. [48]

Crucially, it is anticipated that these generative
techniques would generate chemically accurate
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structures without requiring the explicit inclusion of
building block libraries or guidelines for their fusion
and chemical transformation. Nevertheless, up until
now, generative Al has only been used for
retroactive de novo design by the replication of
known bioactive ligands or generative anticipated
actions.

We use generative Al in this first prospective
investigation to investigate if it can produce
bioactive de novo designs that are truly
synthesizable. There were two fundamental steps in
the computational technique. Initially, we created a
generic model that used a sizable, unfocused
compound collection to learn the composition of
druglike compounds.

We then improved this general model using more
precise chemical characteristics from a small target-
focused library of actives. We used a recently
published deep recurrent neural network (RNN)
with long short-term memory (LSTM) cells for the
general model. [49,50]
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Figure 4: De Novo Drug Design

CASE STUDY
COVID -19

The SARS-CoV-2 coronavirus that triggered the
COVID-19 pandemic has brought forth formerly
unheard-of worldwide issues in the areas of public
health, economics, and society. As of October 2022,
the extremely contagious virus had caused over 6.5
million deaths and over 620 million confirmed cases
since it first appeared in late 2019.

A promising tool that offers data-driven solutions to
major challenges in managing the pandemic is
artificial intelligence (AI). Advanced Large-scale
datasets pertaining to coronavirus transmission,
disease progression, patient outcomes, population
movement, and health care operations can be used to
uncover insights utilising deep learning and machine
learning approaches.

DRUG DEVELOPMENT

Repurposing current medications is essential in the
hunt for COVID-19 therapies due to the difficulty of
drug design and clinical trials. Mohapatra and
colleagues used machine - earning models to a Pub-
Chem dataset. They used mathematical classifiers
for supervised learning so that the system could
learn from datasets with specifics and useful results.
It was discovered that the naive Bayes classifier was
the best option since it avoided the overfitting
problems that random forest or sequential minimum
optimisation algorithms had.

The model's medication prediction accuracy was
about 73%. In the end, they concluded that
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amprenavir, an antiretroviral medication, was the
most successful in combating COVID-19 infection.
To find possible candidates for medication
repurposing, researchers have performed drug-based
prediction of antiviral activity against COVID-19.
Using in vitro data encoded with chemical
fingerprints that represent certain molecular
substructures, Delijewski and Haneczok created a
supervised machine learning model.

A crucial step in identifying drug effects and
carrying out drug repurposing is investigating drug—
target interactions (DTIs). A DTI prediction model
that particularly incorporates protein sequence and
structured data was presented by El-Behery et al.
The model employs encoding approaches to extract
features based on the physical and chemical
characteristics of protein amino acid sequences.
SMILES (Simplified Molecular Input Line Entry
System) medication strings.  The interactions
between medications and target proteins in human
cells are then predicted using a variety of machine
learning, deep learning, and ensemble learning
techniques. They found possible medications that
might be repurposed by exploiting proteins impacted
by COVID-19 infection in human cells. For
instance, they estimated that the ACE2 protein
would interact with DB00691 and DB05203 with
100% probability.

Identifying and diagnosing distinct medication-
disease interactions is the main obstacle in drug
repurposing. Several Al methods can significantly
medication use and repurposing during the COVID-
19 pandemic. Mohanty et al. employed machine
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learning, deep learning, RNNs, CNNs, and deep
belief network algorithms to quickly and precisely
screen and output the needed medications after using
the Repurpose Drug Database and Open
Chemical/Drug Database as inputs for their model.

With the use of this method, pharmaceuticals can be
repurposed without first undergoing toxicity testing,
enabling the direct use of changed drugs in late-stage
treatment. A key component of COVID-19 drug
development is  phenotype-based compound
screening, which employs gene expression patterns
and has advantages over target-based drug
discovery. Researchers have used a mechanism-
driven neural network technique known as DeepCE,
which combines graph neural networks with
mechanisms for multi-head attention. This method
predicts distinct gene expression profiles impacted
by unique chemical entities by modelling the
connections between chemical substructures and
genes as well as gene—gene interactions. To improve
the data, the researchers also pulled useful
information from the L1000 dataset. This technique
was used to repurpose medications for COVID-19.
Ten new lead chemicals, including cyclosporine and
chloramphenicol, that are consistent with the clinical
findings were successfully identified by the
researchers. [51]

LIST OF AI TOOLS EMPLOYED IN
DRUG DISCOVERY

1) NEURAL GRAPH FINGERPRINTS:

It is employed to forecast the new molecule. You can
use it by going to https://github.com/HIPS/neural-
fingerprint. For the majority of medications to be
found using virtual screening, they must be encoded
as a fixed-size vector called a molecular fingerprint.
One well-liked molecular fingerprint is the extended
connectivity fingerprint (ECFP). In terms of
interpretability,  parsimony, and  predictive
performance, these neural graph fingerprints
perform better than fixed fingerprints.

2) DeepTOX:

It is employed to forecast toxicity. You can use it by
going to www.bioinf jku.at/research/DeepTox.
Deep Learning inherently facilitates multi-task
learning, which involves learning all harmful effects
in a single neural network, hence learning highly
informative chemical characteristics. The DeepTox
pipeline was developed to predict toxicity using
deep learning. The first step of DeepTox is to
normalise the substances' chemical representations.
After that, a lot of chemical descriptors are
calculated and fed into machine learning techniques.
After that, DeepTox trains models, assesses them,
and creates ensembles by combining the best of
them. At last, DeepTox forecasts the toxicity of
novel substances.

Al TOOLS Al TOOLS EMPLOYED
IN DRUG DISCOVERY
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3)DeepNeuralNet QSAR:

It is employed in the prediction of molecular
activity,. You <can wuse it by going to
https://github.com/Merck/DeepNeuralNet-QSAR.
Quantitative structure-activity relationship (QSAR)
models are often employed computational
techniques in the drug discovery process. QSAR
models are regression or classification models that
use molecular structural features to forecast a
molecule's biological activity. (fig:6)These models
are usually used to help scientists better understand
how structural changes impact a molecule's
biological functions and to prioritise a list of
potential molecules for upcoming lab trials.

4) ORGANIC:

This effective molecular production tool produces
compounds with desired characteristics.

You can use it by going to https:/github.
com/aspuru-guzik-group/ORGANIC. Based on
Objective-Reinforced ~ Generative  Adversarial
Networks (ORGAN), ORGANIC is a framework
that can produce a distribution over molecular space
that satisfies a set of desired metrics. This approach
combines two machine learning techniques:
Reinforcement Learning (RL) to bias this generative
distribution towards particular qualities and a
Generative Adversarial Network (GAN) to produce
non-repetitive sensible molecular species.

5) DEEPCHEM:

It is employed in a number of drug discovery job
forecasts. To use it, go to
https://github.com/deepchem/deepchem.
DeepChem is developed in Python and offers a
feature-rich set of capabilities for using deep
learning to solve cheminformatics and drug
discovery issues. Chemiformatics has used earlier
deep learning frameworks, such as scikitlearn, but
DeepChem is the first to use NVIDIA GPUs to speed
up computation.[52]

APPLICATION OF AI IN THE
PHARMACEUTICAL INDUSTRY

From excipient selection and synthesis pathway
prediction to process optimisation, drug design,
supply chain, and preventative maintenance, among
other areas, artificial intelligence is radically
changing the pharmaceutical production process.
Al's application in medicine Businesses have the
ability to save a substantial amount of money and
time at different phases of medication research and
discovery. By identifying chemicals more rapidly
and precisely predicting their effects, Al speeds up
hit identification, lead optimisation, and preclinical
testing. The drug discovery process, which typically
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takes three to six years, can be expedited by Al-
driven technologies. Al can shorten this period by
one to two years by more accurately predicting
therapeutic efficacy, toxicity, and ideal molecular
configurations.

The average cost of producing a new drug is
approximately $2.8 billion, of which 35% can be
attributed to the cost of drug discovery [53]. Al can
lower the cost of drug discovery by testing fewer
molecules and enhancing the early-phase trial
success rates. Al can also help optimise clinical trial
designs, including patient recruitment, patient
monitoring, and cutting trial duration and cost. By
automating data gathering and processing, Al can
help shorten the time required for clinical trials,
enabling more effective patient outcome monitoring.
Trials have been shortened by 15 to 30 percent as a
result [54].

Al can help shorten the time it takes for medications
to transition from Phase I to Phase I1I by anticipating
side effects earlier and improving dosage
techniques. Al-identified molecules have shown
greater success rates in early stage clinical studies in
contrast to those found by conventional techniques.
Compared to the previous industry standards of 40—
65%, phase 1 trials for Al-discovered medications
have attained success rates of 80-90%. The success
rate for Al-discovered compounds in Phase 2 trials
is about 40%, which is similar to past averages. The
pharmaceutical industry may witness an increase in
the likelihood of a drug successfully completing all
clinical phases from 5-10% to 9-18% if these trends
persist into phase 3 and beyond.(55)

Al BASED ADVANCED APPLICATIONS

AI BASED NANOROBOTICS FOR DRUG
DELIVERY

The primary components of nanorobots are
integrated circuits, sensors, power supplies, and safe
data backups that are maintained by computational
technologies like artificial intelligence [56]. They
are designed to prevent the collision, identify the
target, find and attach it, and then expel it from the
body. The capacity of advanced nano/microrobots to
navigate to the targeted region based on
physiological parameters, such pH, improves their
efficacy and lowers systemic adverse effects [57].
When developing implantable nanorobots for
controlled drug and gene delivery, factors like dose
adjustment, sustained release, and control release
must be taken into account. Additionally, the drugs
must be released automatically using Al tools like
NNs, fuzzy logic, and integrators [58]. Microchip
implants are utilised for both programmed release
and implant location detection.



Dhamodhara Prasad., et al/Int. ]. Res. Pharmacology & Pharmacotherapeutics, 14(1) 2026 [xxx-xxx]

Al EMERGENCE IN NANOMEDICINE

For the effective diagnosis, treatment, and
surveillance of intricate diseases like HIV, cancer,
malaria, asthma, and multiple inflammatory
disorders, nanomedicines employ nanotechnology
with medications. Due to their improved efficacy
and treatment, drug delivery modified by
nanoparticles has gained importance in recent years
, within the domains of therapeutic and diagnostics
[59]. Many formulation development issues could
be resolved by combining nanotechnology and
artificial intelligence [60]. By examining the energy
produced during the drug molecules' contact and
keeping an eye on the circumstances that can cause
the formulation to aggregate, a methotrexate
nanosuspension was computationally created .

Chemical calculations and coarse-grained modelling
can help determine drug-dendrimer interactions and
assess drug encapsulation with within the dendrimer.
In addition , the impact of surface chemistry
properties on the internalisation of nanoparticles into
cells can be investigated using programs like
LAMMPS and GROMACS [61].

CURRENT CHALLENGES AND
LIMITATIONS
DATA QUALITY AND AVAILABILITY

The availability of high quality annotated datasets
for model training is a major obstacle in Alpowered
drug development. A major obstacle is data
heterogeneity, which occurs when data originate
from many sources including chemical structures,
biological assays, and clinical trials. Combining and
coordinating these various data sources into a single
Al training formats can be intricate and time-
consuming [62]. Additionally, biases in the training
data might have a significant influence on the
robustness, dependability along with model
performance ; For instance, the resulting model may
show biases that restrict its generalisability and
accuracy in practical applications if a dataset mostly
represents a particular demographic or disease
subset [63,64]. Careful data curation, reliable data
pretreatment  procedures, along with the
development of strategies to migrate bias and
guarantee data representativeness are all necessary
in order to address these limitations.

INTERPRETABILITY AND TRANSPARENCY

The intrinsic complexity and opacity of Al systems
provide a serious obstacle to their mainstream
adoption. Many AI models, most notably DNNs,
operate as "black boxes," making it difficult to
understand the logic underlying their choices [65].
Concerns around trust, accountability, and the

27

potential for inadvertent bias. In the healthcare
industry, for example, it is essential for doctors to
comprehend the logic behind an Al-powered
diagnostic systems aimed at enabling to make well-
informed judgements and guarantee patient safety
[66].

INTEGRATION IN TO EXISTING DRUG
DEVELOPMENT PROCESS

There are many obstacles to overcome when
integrating Al techniques into current drug
development processes. Rigid protocols and a heavy
focus on established methodologies are common
characteristics of traditional pharmaceutical
operations [67]. The current infrastructure,
workflows, and skills may need to be substantially
modified to incorporate Al technologies . Adoption
of these technologies may also be hampered by
worries about data privacy, intellectual property, and
the possible effects of AI on jobs in the
pharmaceutical sector. [68]

FUTURE PROSPECTIVES

It is anticipated that Al-driven methods will become
more and more prevalent in the future of drug
discovery, allowing for improved comprehension of
disease physiopathology and more precise
predictions of drug-target interactions. Al models
are going to trained using larger biological datasets,
including as proteomics, metabolomics, genomes,
and patient data from clinical trials, to find new drug
candidates and optimise drug design to lower the
chance of clinical trial failure [69-71].

Furthermore, Al has the potential to revolutionize
the design and execution of clinical trials in general
by enhancing patient recruitment, monitoring, and
data analysis. This is because sophisticated
algorithms will make it possible to identify qualified
candidates based on genetic and phenotypic profiles,
guaranteeing that trials are carried out with the most
suitable cohort of participants [72-74]

By using Big Data to customise treatments for each
patient, Al will keep accelerating the development
of personalised medications. Because genetic,
environmental, and lifestyle data can be analysed,
highly customised treatment approaches will
continue to be widely used, taking into account each
patient's unique demands [75,76]. While predictive
maintenance algorithms will minimise downtime
and prevent equipment breakdowns, Al-driven
digital twins will simulate and optimise
manufacturing processes in real-time, enabling more
responsive and agile manufacturing operations [77].

For example, the Health Insurance Portability and
Accountability Act (HIPAA) Privacy Rule in the
United States sets national standards to protect
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individuals’ medical records and other identifiable
health information, commonly referred to as
protected health information (PHI). This regulation
applies to healthcare providers, health plans, and
healthcare clearinghouses that engage in specific
electronic healthcare transactions [78].

DISCUSSION:

Owing to its capacity to deliver rapid , data-driven
insights that conventional approaches are unable to
provide, artificial intelligence has emerged as a
potent force in contemporary drug discovery. Large
biological and chemical datasets are analysed by Al
techniques to rank compounds early in the discovery
process, predict interactions, and uncover disease-
related targets. When compared to traditional trial-
and-error methods, this greatly reduces delays and
increases accuracy. Deep learning scoring systems,
generative models, and Al-based virtual screening
have improved lead optimisation and hit detection.
These methods provide new chemical compounds
with enhanced drug-like characteristics while
enabling effective prediction of binding affinity,
molecular properties, and toxicity. Consequently ,
Al minimizes the need for labor — intensive
experimental screening efforts thus creating new
opportunities of early identification of good
candidates. Al aids in pharmacokinetic modelling,
toxicity evaluation, and ADMET prediction in
preclinical and clinical research, assisting in the
removal of inappropriate compounds prior to costly
testing. Through improved patient selection,
adaptive trial designs, and digital twin simulations,
Al also enhances clinical trials, ultimately lowering
failure rates and raising trial efficiency.
Nevertheless, there are still obstacles in the way of
completely incorporating Al into pharmaceutical
processes. Regulatory acceptance, model
transparency, and data quality remain significant
challenges. Many sophisticated models function as
"black boxes," which restricts trust and
interpretability. Strong computing infrastructure,
knowledgeable staff, and explicit policies about data
privacy and intellectual property are also necessary
for incorporating Al. For Al-driven drug discovery
to be widely used, these problems must be resolved.

CONCLUSION:

With its creative answers to many of the
shortcomings of conventional research approaches,
artificial intelligence has emerged as a crucial pillar
in current drug development. Al significantly
reduces the time, cost, and uncertainty associated
with drug development by enabling rapid target
identification, more precise molecular behaviour
prediction, and effective lead compound
optimisation. Its use goes beyond early discovery; it
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has an impact on formulation design, clinical trial
optimisation, preclinical modelling, toxicity
prediction, and personalised medicine. Neural
networks, generative models, and digital twins are
examples of Al-driven tools that significantly
improve decision-making and success rates along
the pharmaceutical pipeline. Despite these
advancements ,challenges related to data quality,
model interpretability, ethical use, and regulatory
compliance, current technology developments and
trends in worldwide acceptance show that Al will
continue to transform the pharmaceutical industry.
As integration grows, Al offers safer clinical trials,
more precise treatments, fewer development
failures, and quicker access to new medications—all
of which will improve patient outcomes and
influence the direction of global healthcare in the
future.
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