

ISSN: 2278-2648

International Journal of Research in Pharmacology & Pharmacotherapeutics (IJRPP)

IJRPP | Vol.13 | Issue 3 | Jul - Sept -2024

www.ijrpp.com

DOI : <https://doi.org/10.61096/ijrpp.v13.iss3.2024.350-356>

Research

Gas Chromatography-Mass Spectrometry analysis of Hydroalcoholic extract of *Hibiscus vitifolius* Linn Leaves.

A. Krishnaveni¹, K. Umamageshwari², S. Prithivirajan², M. Bairavi², T. Venkata Rathina Kumar³

¹Assistant professor, ²II year M.Pharm, ³Professor,

Department of Pharmacognosy, College of Pharmacy, Madurai Medical College, Madurai.

Affiliated to the Tamilnadu Dr. MGR Medical University, Chennai – 600032

*Author for Correspondence: Dr. A. Krishnaveni. M.Pharm, Ph.D.

Email: akrishnaveni72@rediffmail.com

	Abstract
Published on: 24 Sept 2024	<i>Hibiscus vitifolius</i> also known as tropical rose mallow and grape leaved mallow, belongs to the family of Malvaceae. It is found in India and in United States of America. <i>Hibiscus vitifolius</i> is traditionally used for the treatment of jaundice, diabetics, inflammation, urease activity in India. The literature look over revealed the presence of alkaloids, flavones, gossypin, carotenoids, atropine, promethazine, aldose, galactose, bioflavonoids, morphine, pentahydroxy glycosyl flavones. The plant exhibited antibacterial, antimicrobial, antioxidant, antihepatotoxic, anticancer, diuretic, anti-inflammatory and antiepilepsy effect. The fresh leaves of <i>Hibiscus vitifolius</i> Linn were authenticated, collected, shade dried and coarsely powdered, was extracted with hydroalcohol. The extract was concentrated and stored in air tight container for further use. The aim of the present research study was to carry out for the identification of bioactive molecules from hydroalcoholic extract of <i>Hibiscus vitifolius</i> Linn leaves by Gas chromatography-Mass spectrometry (GC-MS). GC-MS chromatogram showed twentyfive bioactive molecules which may attribute to different pharmacological properties.
Published by: DrSriram Publications	
2024 All rights reserved.	
	Keywords: Gas chromatography- Mass spectrometry, <i>Hibiscus vitifolius</i> (L).

INTRODUCTION

Hibiscus vitifolius Linn is medicinal herb, belongs to Malvaceae family. *Hibiscus vitifolius* also known as tropical rose mallow, Grape leaved mallow [1]. *Hibiscus vitifolius* is a common plant of India and United States of America. *Hibiscus vitifolius* is widely distributed in tropical Asia, Africa, Australia and it is also naturalized in West Indian Islands, Cuba, Hispaniola, Jamaica Central America [2]. *Hibiscus vitifolius* is traditionally used for the treatment of jaundice, diabetics, inflammation, urease activity in India [3]. Ethnomedicinal claim of *Hibiscus vitifolius* leaf powder is used to treat inflammation in Chittur Taluk in Palakkad District, Kerala. Triupur district,

Tamilnadu, leaf juice is used to treat cuts and wounds, Sivagangai district and Tirunelveli district, Tamilnadu, used leaf preparations to control diarrhoea [4-7]. The plant having alkaloids, flavones, gossypin, carotenoids, atropine, promethazine, aldose, galactose, bioflavonoids, morphine, pentahydroxy glycosyl flavones [8]. The pharmacological survey reported antibacterial, antioxidant, anti-inflammatory, hepatoprotective activity, antiepilepsy, anti-cancer activity and anti-microbial. [9-15]. It is immense and essential to identify the bioactive phytoconstituents present in the *Hibiscus vitifolius*. The present research is to investigate the Gas-chromatography-Mass spectrometry of hydroalcoholic extract of *H.vitifolius* Leaves.

Authentication and collection

Leaves were collected from a street side of Rayagiri village, Sivagiri Taluk, Tenkasi District, Tamil Nadu in the month of Mar 2024. The fresh leaves were identified and authenticated by a botanist DR.Stephen, Professor, Department of Botany, The American College, Madurai-625002. The herbarium of this specimen was kept in the department for further reference.

Preparation of hydroalcoholic extract of *Hibiscus vitifolius* linn (HAEHV)

Collected leaves were washed, shade dried and coarsely powdered (50 gm), passed through sieve no: 40, was extracted with hydroalcohol by maceration technique for 72 hours. The extracts were collected, concentrated to dryness and stored in air tight container. The hydroalcoholic extract was analysed by GC-MS.

Gas chromatography- Mass spectrometry analysis

Gas chromatography – Mass spectrometry (GC-MS) (Shimadzu QP 2020) is an analytical method that combines the features of gas-chromatography and mass spectrometry to identify different substances within a test sample. It is a hyphenated system which is a very compatible technique and the most commonly used technique for the identification and quantification of biochemical components of medicinal plants. GC-MS analysis was carried out to identify some of the potent volatile and semi-volatile constituents present in the hydroalcoholic extract of *Hibiscus vitifolius* Linn

Column

Column is fused silica, packed with SH-Rxi-5 Sil MS (30 m x 0.25 mm ID x 250 μ m df) and the components were separated using helium as carrier gas at a constant flow of 1 ml/min. The injector temperature was set at 280 $^{\circ}$ C.

Condition

1 μ L of hydroalcoholic extract sample injected into the instrument, oven temperature was as follows: 50 $^{\circ}$ C (3 min) followed by 180 $^{\circ}$ C at the rate of 15 $^{\circ}$ C min-1.

Mass detector

The mass detector conditions were: transfer line temperature 290 $^{\circ}$ C; ion source temperature 230 $^{\circ}$ C; and ionization mode electron impact at 70 eV, a scan time 0.2 sec and scan interval of 0.1 sec. The fragments from 50 to 600 Da. The spectrums of the components were compared with database of spectrum of known components stored in the GC-MS NIST (2017) library.

RESULTS AND DISCUSSION

Gas chromatography – Mass spectrometry (GC-MS) identified the presence of twentyfive bioactive constituents are shown in the table 1 and its biological activity are shown in Table 2 and the chromatogram was displayed in Fig 1.

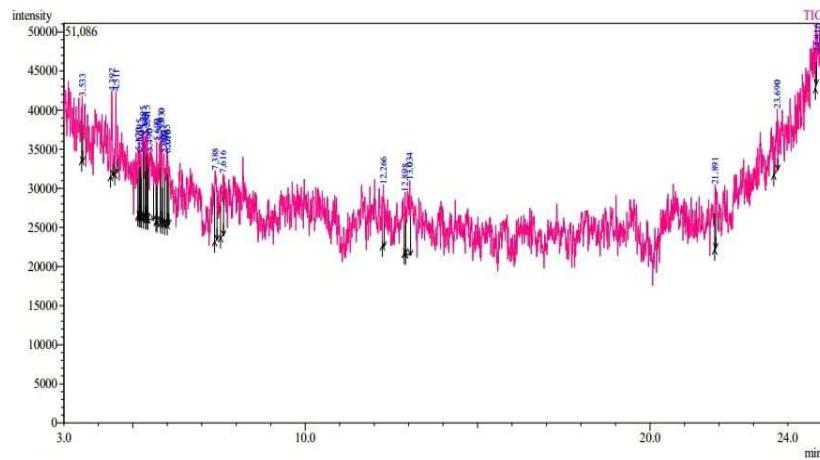


Fig 1: Gas chromatography- Mass spectrometry of HAEHV

Table 1: List of bioactive compounds present in HAEHV leaves by GC-MS

Peak#	Retention Time	Area %	Mol. Weight	Mol. formula	Name of the Bioactive compound
1	3.533	1.47	145	C ₆ H ₅ ClFN	Benzenamine, 3-chloro-4-fluoro-
2	4.392	3.59	218	C ₉ H ₁₈ O ₄ Si	Methyl 2-(trimethylsilyl)ethyl malonate
3	4.511	2.89	144	C ₈ H ₁₆ O ₂	2-Isopropoxyxan-4-ol
4	5.170	2.69	154	C ₆ H ₉ F ₃ O	2,2-Difluorobut-3-en-1-yl 2-fluoroethyl ether
5	5.195	1.92	130	C ₇ H ₁₁ Cl	2-Heptyne, 7-chloro-
6	5.230	2.19	222	C ₁₁ H ₁₀ O ₅	4,6-Diformyl-2,5-dimethoxytropone
7	5.295	5.20	224	C ₁₀ H ₁₂ N ₂ O ₄	Benzene, 1,2,3,5-tetramethyl-4,6-dinitro-
8	5.349	4.91	236	C ₉ H ₁₉ BCl ₂ Si	2-Pentene, 3-(chloroethylboryl)-2-(chlorodimethylsilyl)-, (E)-
9	5.385	2.99	175	C ₁₀ H ₉ NO ₂	3H-Indol-3-one, 1-acetyl-1,2-dihydro-
10	5.415	3.01	162	C ₁₁ H ₁₄ O	2(1H)-Naphthalenone, 4a,5,8,8a-tetrahydro-4a-methyl-, trans
11	5.490	11.83	422	C ₁₆ H ₁₅ IN ₄ O ₂	N-(4-Iodophenyl)-3-(isonicotinoylhydrazone)butyramide
12	5.690	2.11	202	C ₆ H ₆ N ₂ O ₄ S	Benzenesulfonamide, 4-nitro-
13	5.790	6.96	152	C ₁₀ H ₁₆ O	Bicyclo[3.1.1]heptane-2-carboxaldehyde, 6,6-dimethyl
14	5.830	4.96	154	C ₈ H ₁₀ O ₃	3,8,11-Trioxatetracyclo [4.4.1.0(2,4).0(7,9)]undecane, (1.alpha.,2.alpha.,4.alpha.,6.alpha.,7.beta.,9.beta.)-
15	5.900	4.16	414	C ₂₈ H ₃₄ N ₂ O	[5,9-Dimethyl-1-(3-phenyl-oxiran-2-yl)-deca-4,8-dienylidene]-2-phenyl-aziridin-1-yl)-amine
16	5.985	5.14	240	C ₈ H ₁₆ O ₈	l-Gala-l-ido-octose
17	6.010	3.15	252	C ₁₀ H ₁₂ N ₄ O ₄	2-Butanone, (2,4-dinitrophenyl)hydrazone
18	7.988	4.85	280	C ₁₂ H ₁₆ N ₄ O ₂ S	4-Morpholinethiocarboxylic acid 2-[1-[2-pyridyl]-2-hydroxyethylidene]hydrazide
19	7.616	5.32	224	C ₈ H ₁₆ O ₅ S	Ethyl-1-thio-.beta.-d-glucopyranoside
20	12.266	2.85	292	C ₁₆ H ₂₀ O ₅	2,4-Dioxabicyclo[3.3.0]octan-6-ol, 7-(2-carboxy-1-propyl)-3-phenyl
21	12.898	2.46	163	C ₉ H ₉ NO ₂	Benzene, 1-cyclopropyl-2-nitro-
22	13.034	8.31	306	C ₁₀ H ₁₂ F ₆ N ₂ O ₂	1,2-Diaminocyclohexane, N,N'-bis(trifluoroacetyl)- (stereoisomer 2)

23	21.891	1.92	220	C ₁₁ H ₁₆ N ₄ O	1H-[1,2,4]Triazole-3-carboxylic acid (2-cyclohex-1-enyl-ethyl)-amide
24	23.690	3.81	223	C ₁₀ H ₁₃ NO ₃ Si	Benzaldehyde, 2-nitro-4-trimethylsilyl-
25	24.816	1.28	207	C ₁₃ H ₂₁ NO	N-Methyl-1-adamantaneacetamide

Among the identified bioactive molecules Benzenamine, 3-chloro-4-fluoro- used as intermediate in synthesis of antibiotic, 2-Heptyne, 7-chloro- used as preparation of grignard reagent, Benzene , 1,2,3,5-tetramethyl-4,6-dinitro- used to be manufacturing of dye , 3H-Indol-3-one, 1-acetyl-1,2-dihydro- is used to applied schmidt rearrangement, 2(1H)-Naphthalenone, 4a,5,8,8a-tetrahydro-4a-methyl-, trans and 4-Morpholinethiocarboxylic acid 2-[1-[2-pyridyl]-2-hydroxyethylidene]hydrazide showed as anti-inflammatory properties, N-(4-Iodophenyl)-3-(isonicotinoylhydrazono)butyramide showed as anticonvulsant activity, Benzenesulfonamide, 4-nitro- reported as acetylcholine inhibitor, Bicyclo[3.1.1]heptane-2-carboxaldehyde, 6,6-dimethyl showed as alzheimer's disease, 3,8,11Trioxatetracyclo[4.4.1.0(2,4).0(7,9)]undecane, (1.alpha.,2.alpha.,4.alpha.,6.alpha., 7.beta.,9.beta.)-and 2,4-Dioxabicyclo[3.3.0]octan-6-ol, 7-(2-carboxy-1-propyl)-3-phenyl reported as antiallergy, [5,9-Dimethyl-1-(3-phenyl-oxiran-2-yl)-deca-4,8-dienylidene]-(2-phenyl-aziridin-1-yl)-amine and 1,2-Diaminocyclohexane, N,N'-bis(trifluoroacetyl)- (stereoisomer 2) showed as antimicrobial activity and also 1,2-Diaminocyclohexane, N,N'-bis(trifluoroacetyl)- (stereoisomer 2) reported as antitumor activity , 2-Butanone, (2,4-dinitrophenyl)hydrazone and N-Methyl-1-adamantaneacetamide showed antioxidant properties, l-Gala-l-ido-octose showed helps in improvement memory, Ethyl-1-thio-.beta.-d-glucopyranoside reported as anti-bacterial properties, Benzene, 1-cyclopropyl-2-nitro- used as degradation of polystyrene , 1H-[1,2,4]Triazole-3-carboxylic acid (2-cyclohex-1-enyl-ethyl)-amide reported as Covid, Benzaldehyde, 2-nitro-4-trimethylsilyl and N-Methyl-1-adamantaneacetamide reported as antifungal and N-Methyl-1-adamantaneacetamide showed as anti-aflatoxigenic, antibacterial.

Table 2: List of phytocompounds identified with biological activity present in HAEHV by GC-MS

Peak#	Name of the bioactive compound	Derivative	Biological activity
1	Benzenamine, 3-chloro-4-fluoro-	Aniline	Intermediate in synthesis of antibiotic [17]
2	Methyl 2-(trimethylsilyl)ethyl malonate	Ethyl	-
3	2-Isopropylloxan-4-ol	Isopropyl alcohol	-
4	2,2-Difluorobut-3-en-1-yl 2-fluoroethyl ether	Ether	-
5	2-Heptyne, 7-chloro-	Aliphatic alkyl	preparation of Grignard reagent [18]
6	4,6-Diformyl-2,5-dimethoxytropone	Tropane	-
7	Benzene, 1,2,3,5-tetramethyl-4,6-dinitro-	Benzene	Manufacturing of dye [19]
8	2-Pentene, 3-(chloroethylboryl)-2-(chlorodimethylsilyl)-, (E)-	Pentene	-
9	3H-Indol-3-one, 1-acetyl-1,2-dihydro-	Indole	Role of Schmidt rearrangement [20]
10	2(1H)-Naphthalenone, 4a,5,8,8a-tetrahydro-4a-methyl-, trans	Naphthalene	Anti-inflammatory [21]
11	N-(4-Iodophenyl)-3-(isonicotinoylhydrazono)butyramide	Butyramide	Anticonvulsant activity [22]
12	Benzenesulfonamide, 4-nitro-	Benzosulfonamide	Acetylcholine inhibitor [23]
13	Bicyclo[3.1.1]heptane-2-carboxaldehyde, 6,6-dimethyl	Bicycloheptane	Alzheimer's disease [24]
14	3,8,11-Trioxatetracyclo[4.4.1.0(2,4).0(7,9)]undecane, (1.alpha.,2.alpha.,4.alpha.,6.alpha.,7.beta.,9.beta.)-	Tetracycloundecane	Antiallergy [25]
15	[5,9-Dimethyl-1-(3-phenyl-oxiran-2-yl)-deca-4,8-dienylidene]-(2-phenyl-aziridin-1-yl)-amine	Epoxide	Anti microbia[26]
16	l-Gala-l-ido-octose	Octose	Helps in improvement memory [27]
17	2-Butanone, (2,4-dinitrophenyl)hydrazone	Butanone	Antioxidant [28]

18	4-Morpholinethiocarboxylic acid 2-[1-[2-pyridyl]-2-hydroxyethylidene]hydrazide	Morpholine	Anti-inflammatory [29]
19	Ethyl-1-thio-.beta.-d-glucopyranoside	glucopyranoside	Antibacterial [30]
20	2,4-Dioxabicyclo[3.3.0]octan-6-ol, 7-(2-carboxy-1-propyl)-3-phenyl	Dioxabicyclooctane	Allergic asthma [31]
21	Benzene, 1-cyclopropyl-2-nitro-	Benzene	Degradation of polystyrene [32]
22	1,2-Diaminocyclohexane, N,N'-bis(trifluoroacetyl)- (stereoisomer 2)	Cyclohexane	Antitumor activity and antimicrobial activity [33,34]
23	1H-[1,2,4]Triazole-3-carboxylic acid (2-cyclohex-1-enyl-ethyl)-amide	Triazole	Covid [35]
24	Benzaldehyde, 2-nitro-4-trimethylsilyl-	Aromatic aldehyde	Antifungal activity [36]
25	N-Methyl-1-adamantaneacetamide	Adamantaneacetamide	Antifungal, anti-aflatoxigenic, antioxidant, antibacterial [37]

Methyl 2-(trimethylsilyl) ethyl malonate, 2-Isopropylloxan-4-ol, 2,2-Difluorobut-3-en-1-yl 2-fluoroethyl ether, 4,6-Diformyl-2,5-dimethoxytropone, 2-Pentene, 3-(chloroethylboryl)-2-(chlorodimethylsilyl)-, (E)- does not show any biological activity, these compounds were identified for the first time in this plant.

CONCLUSION

The current investigation concluded that the hydroalcoholic extract of *Hibiscus vitifolius* (L) leaves reported the presence of twenty bioactive compounds with potential pharmacological activities. It may serve as potential source of therapeutic drugs due to the presence of important phytochemical bioactive compounds which contribute the activities namely antiallergy, anti-inflammatory, anti-tumor, anti-bacterial and other activities. The results indicate the pharmacological potential and provide a basic for further research.

REFERENCES

1. <https://efloraofindia.com/2011/03/06/hibiscus-vitifolius/> Accessed on 02/09/2024
2. Kundu B.C and Chhaba Biswas 1974: On fioria vitifolia(L) mattei:Botanical survey of India, Calcutta: vol, 16,(1-4) 125-138.
3. Vijayan, P., Raghu, C., Ashok, G., Dhanaraj, S.A., Suresh, B., 2004. Antiviral activity of medicinal plants of Nilgiris. *Indian Journal of Medical Research* 120, 24–29
4. Jayalekshmi C.V, Reshma K. Ramesh, M. Vijai, and V. Suresh 2023: Ethnomedicinal Plants Used by Irula Tribal Settlement of Attappady in Palakkad District, Kerala, India: *Bioprospecting of Tropical Medicinal Plant*: pp 107–122(2023).
5. Johnson.M, Maharajan.M, Janakiraman. N 2015: Floristic diversity and medicinal importance of South Vagaikulam Region Tirunelveli, Tamil Nadu, South India: *Journal of Medicinal Herbs and Ethnomedicine*: 1 125-129.
6. S.Shanmugam, M.Kalaiselvan, P.Selvakumar, Kuru suresh and K.Rajendran 2011:Ethnomedical plants used to cure diarrhoea and dysentery sivagangai district of Tamilnadu,India : *International journal of research in ayurveda & pharmacy* :2(3) 991-994 .
7. Usha Devi, Himanshu Dwivedi, Aminudin and Hakimudin Khan. Traditional Phytotherapy of Bhadrak, Odisha – A Contribution: *Hippocratic journal of unani medicine*: 2015; 11(3): 131-149.
8. Alshaimaa Hassan-Abdallah , Ali Merito , Souad Hassan , Djaltou Aboubaker , Mahdi Djama, Zemedé Asfaw , Ensermu Kelbessa. Medicinal plants and their uses by the people in the Region of Randa, Djibouti: *Journal of Ethnopharmacology*. 2013: 148: 701–713.
9. Mahalekshmi K, Senthil Kumar N, Kishor KumarV: Pharmacognostical investigation of fioria vitifolia: *International Journal of Biological & Pharmaceutical Research*:2013; 4(4): 231-236.
10. Chamundeeswari .D., Ethirajan Sukumar , Amar K , Brahmananda Reddy.N , Anil Kumar.I , Chowdry B.V, SamathaK. Cytotoxic and antibacterial activity of gosyypin :*Natural products science*: 2007; 13(4): 300-303.

11. Mahalakshmi.K, Senthilkumar.N, Solairaj.P, Parthiban K. Isolation of triterpenes from fioria vitifolia (L.) And it's antioxidant activity: *International Journal of Biological & Pharmaceutical Research*: 2013; 4(9): 3596-3600,
12. Krishnamoorthi Mahalakshmi, Senthil Kumar Natesan, Kugalur Ganesan Parthiban, Ganesan Sekar. Anti-inflammatory and antipyretic activity of Fioria vitifolia : *International Current Pharmaceutical Journal*: 2013; 2(7): 119-121,
13. Pradeep Kumar Sama: Assessment of Hepatoprotective Activity of Hibiscus vitifolius leaves in CCL4 induced hepatotoxic rats: *Research J. Pharmacology and Pharmacodynamics*: 2013; 5(6): 313-316.
14. Pradeep Kumar Samal: Investigation of Antiepileptic Activity of *Hibiscus vitifolius* leaves: *Asian J. Pharm. Tech*: 2013; 3(2) 63-66.
15. Prabhakara.D, Rajeshkanna A, Senthamilselvi M.M. In vitro Anticancer Activity of Hibiscus vitifolius Flowers Ethyl Acetate Fraction against Hepg2 Cell Line: *British Journal of Pharmaceutical Research*: 2016; 9 (5): 1-5.
16. Gayatri Jejurkar, Machindra Chavan 2023: Antimicrobial activity confirmed in phytoconstituent, Gossypin extracted from *Hibiscus vitifolius* Linn: *Eur. Chem. Bull*:12(8) 115-137.
17. [https://www.ottokemi.com/fluorinated-building-blocks/3-Chloro4-Fluoroaniline.aspx#:~:text=C%202101%20\(OTTO\)%203%2D,important%20intermediates%20for%20N%20orfloxacin%20Synthesis](https://www.ottokemi.com/fluorinated-building-blocks/3-Chloro4-Fluoroaniline.aspx#:~:text=C%202101%20(OTTO)%203%2D,important%20intermediates%20for%20N%20orfloxacin%20Synthesis): Accessed on 12.08.2024.
18. Herman G. Richey, Jr., (I) and Alan M. Rothman 1968: Intramolecular cyclizations of acetylenic grignard reagents: *Tetrahedron Letters*: 1457-1460. [https://doi.org/10.1016/S0040-4039\(01\)98978-6](https://doi.org/10.1016/S0040-4039(01)98978-6)
19. Klein SJ 2014: 1,3-Dinitrobenzene: *Encyclopedia of Toxicology*:volume 2. <http://dx.doi.org/10.1016/B978-0-12-386454-3.01220-3>
20. Desarbre.E, Savelon.L, Corne. O, and Mdrour J.Y 1996: Oxidation of Indoles and 1,2-Dihydro-3H-indol-3-ones: *Pergamon*: Vol. 52, No. 8, pp. 2983-2994. [https://doi.org/10.1016/0040-4020\(96\)00001-4](https://doi.org/10.1016/0040-4020(96)00001-4)
21. Sabrin R. M. Ibrahim, Sana A. Fadil, Haifa A. Fadil, Bayan A. Eshmawi, Shaimaa G. A. Mohamed and Gamal A. Mohamed 2022: Fungal Naphthalenones; Promising Metabolites for Drug Discovery: Structures, Biosynthesis, Sources, and Pharmacological Potential: *Toxins* : 14, 15. <https://doi.org/10.3390/toxins14020154>
22. <https://en.m.wikipedia.org/wiki/Butyramide#:~:text=reduction%20of%20butyraldoxime.-,Derivatives,differentiation%20status20%20of%20most%20cells> : Accessed on :13.08.2024.
23. Mehtap tugrak, halise inci gül, barış anıl, ilhami gülçin 2020: Synthesis and pharmacological effects of novel benzenesulfonamides carrying benzamide moiety as carbonic anhydrase and acetylcholinesterase inhibitors: *Turkish Journal of Chemistry*: 44: 1601-1609. doi:10.3906/kim-2007-37
24. <https://en.m.wikipedia.org/wiki/Myrtenal>, Accessed on :13.08.2024
25. Dabin Choi, Wesuk Kang and Taesun Park 2020: Anti-Allergic and Anti-Inflammatory Effects of Undecane on Mast Cells and Keratinocytes:molecules : 2020; 25, 1554. doi:10.3390/molecules25071554
26. Goraksh J Hase, Keshav K Deshmukh, Raghunath D Pokharkar, Tukaram R Gaje, Narendra D Phatanagre 2017: Phytochemical Studies on *Nerium oleander* L. Using GC-MS: *International Journal of Pharmacognosy and Phytochemical Research*: 2007; 9(6): 885-891. Doi:10.25258/phyto.v9i6.8195
27. Sirigiri Chandra Kala and Kandru Ammani 2017: GC-MS analysis of biologically active compounds in *Canthium parviflorum* Lam. leaf and callus extracts: *International Journal of ChemTech Research*: 2017; 10(6): 1039-1058.
28. <https://www.benchchem.com/product/b7830185> Accessed on 13.08.2024.
29. Archana Kumaria, Rajesh K. Singh: Morpholine as ubiquitous pharmacophore in medicinal chemistry: Deep insight into the structure-activity relationship (SAR): *Bioorganic Chemistry*: 2020; 96:10357. <https://doi.org/10.1016/j.bioorg.2020.103578>
30. Ishmam I. Arabi, Md Ahad Hossain, Sarkar M.A. Kawsar, Neha Joshi, Jyoti Maithani Kalra, Nidhi Gairola, Jyotsana Suyal, Amit Semwal, Rahadian Zainul, Vikash Jakhmola, Supriyo Saha 2024: Glucopyranoside Derivatives as Antibacterial and Antifungal Agents: QSAR, Molecular Docking and ADMET Analyses: *Advanced Journal of Chemistry, Section A*. 2024; 7(6): 758-776. Doi: 10.48309/AJCA.2024.462869.1555
31. Akimoto, Keng: Europaisches Patentamt European Patent Office Office europeen des brevets. *European Patent Specification*: 2004. EP 0 681 788.
32. Subramani, Meenashi, and Umamaheswari Sepperumal: GCMS Analysis of *Pseudomonas* sp., mediated degradation of polystyrene.: *Ann Biol Re*. 2017; 8.3 : 8-11.
33. Khalid A. Khan, Hassan M. Faidallah Abdullah M. Asiri 2013: Synthesis and Biological Evaluation of New N, N -Bis(1-substituted-ethylidene)-ethane1,2-diamine and Their Acetyl and Trifluoroacetyl Derivatives as Cytotoxic and Antimicrobial Agents: *Hindawi Publishing Corporation Journal of Chemistry*: 2013, Article ID 478635, 9 10. <https://doi.org/10.1155/2013/478635>

34. Josiah J. Bonire, Simon P. Fricker 2001: The in vitro antitumour profile of some 1,2-diaminocyclohexane organotin complexes; *journal of inorganic biochemistry*. 2001; 83: 217–221. Doi: 10.1016/s0162-0134(00)00192-6
35. Nashwa hafez zaher, mohammed ismail mostafa abdullah yousef altaher 2020: Design, synthesis and molecular docking of novel triazole derivatives as potential CoV helicase inhibitors: *Acta Pharm*: 1;70(2):145-159. DOI: 10.2478/acph-2020-0024
36. Shahab Khan 2024: Exploring the Chemistry, Reactions, Applications, and Biomedical Potentials of 2-Nitrobenzaldehyde and 2-Chlorobenzaldehyde: *Fine Chemical Engineering*: Volume 5 Issue 2 345 DOI:10.37256/fce.5220244858.
37. Olufunmiso Olusola Olajuyigbe, Tolulope Esther Onibudo, Roger Murugas Cooposamy, Anofi Omotayo Tom Ashafa and Anthony Jide Afolayan 2018: Bioactive Compounds and in vitro Antimicrobial Activities of Ethanol Stem Bark Extract of *Trilepisium madagascariense* DC: *International Journal of Pharmacology*: 14 (7): 901-912 DOI:10.3923/ijp.2018.901.912.